欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    线面角的三种求法(共2页).doc

    • 资源ID:15025455       资源大小:40.50KB        全文页数:2页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线面角的三种求法(共2页).doc

    精选优质文档-倾情为你奉上线面角的三种求法河北 王学会1直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。例1 ( 如图1 )四面体ABCS中,SA,SB,SC 两两垂直,SBA=45°, SBC=60°, M 为 AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的角。解:(1) SCSB,SCSA, 图1SC平面SAB 故 SB是斜线BC 在平面SAB上的射影, SBC是直线BC与平面SAB所成的角为60°。(2) 连结SM,CM,则SMAB,又SCAB,AB平面SCM,面ABC面SCM过S作SHCM于H, 则SH平面ABCCH即为 SC 在面ABC内的射影。 SCH 为SC与平面ABC所成的角。 sin SCH=SHSCSC与平面ABC所成的角的正弦值为77(“垂线”是相对的,SC是面 SAB的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。)2. 利用公式sin=h其中是斜线与平面所成的角, h是 垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。例2 ( 如图2) 长方体ABCD-A1B1C1D1 , AB=3 ,BC=2, A1A= 4 ,求AB与面 AB1C1D 所成的角。解:设点 B 到AB1C1D的距离为h,VBAB1C1=VABB1C113 SAB1C1·h= 13 SBB1C1·AB,易得h=125 设AB 与 面 A B1C1D 所成的角为,则sin=hAB=45 图2AB与面AB1C1D 所成的角为arcsin 45 3. 利用公式cos=cos1·cos2 (如图3) 若 OA为平面的一条斜线,O为斜足,OB为OA在面内的射影,OC为面内的一条直线,其中为OA与OC所成的角, 图31为OA与OB所成的角,即线面角,2为OB与OC所成的角,那么 cos=cos1·cos2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC所成的角的余弦值。解:AOB=AOC OA 在面OBC 内的射影在BOC 的平分线OD上,则AOD即为OA与面OBC所成的角,可知 DOC=30° ,cosAOC=cosAOD·cosDOC cos60°=cosAOD·cos30° cosAOD= 33 OA 与 面OBC所成的角的余弦值为33。 图4专心-专注-专业

    注意事项

    本文(线面角的三种求法(共2页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开