七年级不等式知识点及题型总结(共3页).docx
精选优质文档-倾情为你奉上不等式与不等式组知识要点:不等式定义:用符号“”“”“ ”“”表示大小关系的式子叫做不等式不等式的解:使不等式成立的未知数的值,叫做不等式的解。不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 不等式的基本性质:1. 不等式两边加(或减)同一个数(或式子),不等号的方向不变。 如果a>b,那么a±c>b±c2. 不等式两边相乘(或除以)同一个正数,不等号的方向不变。 如果a>b,那么ac>bc(或)ac>bc3. 不等式两边相乘(或除以)同一个负数,不等号的方向改变。 如果a>b,那么ac<bc(或)ac<bc延伸:1. 若ab,bc,则ac (不等式的传递性)2. 若ab,cd,则acbd (同向不等式相加性质)3. 若ab0,cd0,则acbd (同向不等式相乘性质)4. 若ab0,则0 (不等式的倒数性质)5. 若ab0,则anbn (nN*) (不等式的乘方性质)6. 若ab0,则 (nN*,n1) (不等式的开方性质)一元一次不等式定义:只含一个未知数,并且未知数的次数是1,类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。解不等式: 移项,合并同类项,系数化为一,在数轴上表示出解集 去分母,去分子,去括号,移项,合并同类项,系数化为一,在数轴上表示出解集联系实际:注意“不大于”“不小于”“不超过”“超过”。解一元一次不等式组 : 不等式组的解集:同大取大,同小取小,大小小大取中间,大大小小无解。 步骤:标序号,解不等式,将两式的解集在数轴上表示出来,写出解集题型:一画数轴,表示出不等式解集:二求不等式的解:三判定一系列式子哪些是不等式: 四利用不等式的性质答题:例题1:不等号填空:若a<b<0 ,则 ; ; 五求解不等式及不等式组:例题1:六数解的个数:例题1:不等式<6的正整数解有( ) A 、1个 B 、2个 C、3 个 D、4个七根据文字描述写出不等式: 例题1:“的一半与2的差不大于”所对应的不等式是 ( )。八求不等式的最大正数解,最小正整数解,最大负数解需审清题意九求解取值范围:例题1:若2a12a1,则a的取值范围是_。例题2:如果关于x的不等式3x-m0的正整数解是1,2,3,那么m的取值范围是 。例题3:已知方程组的解为负数,求k的取值范围十应用题: (利用不低于,不高于,超过,不超过的关键词列不等式。)例题1:某次数学测验,共16个选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?专心-专注-专业