欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高斯积分点(共2页).doc

    • 资源ID:15050557       资源大小:19KB        全文页数:2页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高斯积分点(共2页).doc

    精选优质文档-倾情为你奉上单元节点和积分点有什么区别学过数值积分的应该知道,有限元中的积分点指高斯积分点,因为这些点的收敛性好,精度高。 r3SE7xCvM(S'Wy2H t u2xU:S5Lb1Z 1、节点7_ZJ1D oP(在单元内,采用形函数来表述单元内变量的分布规律。而节点值是在节点处的对应物理量。eQ,Y0k |H:u)Ds'd 以简单矩形单元的温度为例:1n*1p"g I 四个节点i,j,m,n的温度分别为Ti,Tj,Tm,Tn.B Nt7DA#l;AV 则以单元内自然坐标(x,y),(-1,-1),(-1,1),(1,-1),(1,1)分别为四个节点,单元内温度分布为:T=Si, Sj, Sm, Sn Ti, Tj, Tm, TnA6L6zB|a Si=1/4(1-x)(1-y):INLG3_5of Sj=1/4(1+x)(1-y) qX v5uZSm=1/4(1+x)(1+y)E g0w4y6l.?-aSn=1/4(1-x)(1+y)M r S1T6R+d:C(单元的形函数我们可以从手册中查到)a O 从而我们知道了温度在单元内的分布。;? vI(s7ML m" k2、积分节点5G z) |我们需要对温度在单元内的面积上进行积分时,因为节点的温度显然与x,y无关,我们只需要考虑对形函数积分。 f"X r1O采用Gauss_Legendre多项式计算积分时,我们只需要计算根据特定积分点的值(在自然坐标系下是固定的,可以查手册,这些点也叫高斯点、积分点)并加以权重就可以。这就把复杂的积分问题变成了简单的代数问题。因为形函数只有单元有关,所以积分点也只与单元形状 有关。mx;B(tz8Do,g h mONg 3.应力一般采用多个积分点的相互插值或外延来计算节点应力。这只是为了减少误差。因为在积分点应力比节点具有更高阶的误差。 从理论上说,形函数已知后,用Maple或者Mathematic等软件进行符号积分的话,是可以精确计算出刚度矩阵和质量矩阵,但是这样做的话,对于工程实际应用来说并不合适(9WIF;c#jxNx原因:1,费时;2,Mindlin中厚板有剪力锁死问题,有时候需要采用缩聚积分),所以有些书上会把2节点梁单元的刚度阵直接写出来,但是再复杂点的单元,就使用数值积分(Newton-Cotes积分和高斯积分);f6w3J&h:_Pm高斯积分的话,积分点不在节点上9B NV4L2K*o?M牛顿-科斯的积分点就是节点,这样得到的质量矩阵是集中质量阵形式 个人理解:t+D f Tq 1.节点作用构造形函数,节点的多少描述规则形状单元内的应力的近似分布情况,并获取节点上的位移值m0DHC8Y.p5pM2.积分点作用是构造规则形状单元与曲边(曲面)单元的转化的变换函数,积分点的选取多少和选取的位置直接关系到这种“映射”a C1HQE? y-jA.|K7r的精确程度,刚度矩阵、边界条件的转化都用到了坐标变换的积分关系,一般取高斯积分点能使被积函数计算精度尽量高。对于newton-cote积分点的选取,这种“映射”看起来,节点和积分点是同一个位置或说是同一点,而对于高斯积分点位置与节点是_z C0不同的。H:s5j,%aA 故有如下结果: 1.由于高斯积分点的这种变换比较高,在方程求解结束,返回积分点上的应力解比较准确F;-A Q"A1yN 2.至于Mindlin中厚板有剪力锁死问题,采用缩聚积分,也是应为这种坐标的变换关系(可见有限单元法基本原理和数值方法GWY6jv,J!O_p345页10.4.11式可知),力的边界条件只有剪切,采用缩聚积分可以较大降低剪切力的影响,但是也可能引起刚度矩阵的奇异,所I6Yc j*P:s以对于中厚板的积分点选取不同一般的方案 1.ANSYS手册(Chapter 13)上列出各种单元的积分点位置。)p6p6FvK C4D2.王瑁成的有限单元法第五章,有解释为什么积分点应力更加精确。HQE"b7XrZ3.因为积分点应力更精确,所以我们一般采用积分点的应力内插或外延确定节点应力。特殊情况除外。单元节点和积分点是不同的两个概念!1z#t0N+V S 积分点是在进行函数积分的时候,为了增加精度,选取的积分点,也就是高斯积分t g8? GoY7h单元节点是你选取单元的时候就已经定下的点,,?4_bk6| 一定有单元节点,但不一定有积分点 在网格划分完了所有的节点就都给定了,就是你网格中的每个点,他是有限元模型中“真实存在”的点。-A0kY'Z)Y0ru A F+A B 但是高斯点纯粹是因为高斯积分这种积分方式引入的。数值分析告诉我们,数值积分有很多方法,比如辛普森积分,高斯积分等,比如说,如果你采用辛普森积分就不存在高斯点这个概念,只有当你采用高斯积分才会有高斯点,不过有限元大多都采用高斯积分。;看过高斯积分就知道高斯点是怎么一回事了。:c有限元求解的结果是每个节点的位移,然后通过形函数插值得到单元任何一个点的位移,当然可以计算出高斯积分点的位移。至于应力,一般是先求解出高斯点出的应力,然后通过平均化的技术平均到每个节点上,高斯点处的应力精度最高,节点最差。专心-专注-专业

    注意事项

    本文(高斯积分点(共2页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开