欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学说题(共5页).doc

    • 资源ID:15052704       资源大小:332.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学说题(共5页).doc

    精选优质文档-倾情为你奉上 高中数学说题“教师说题”是近年来新兴的一项教研活动。概括地说:“说题”是指执教者在精心做题的基础上,阐述对题目解答时所采用的思维方式、解题策略及依据,进而总结出经验性解题规律。说题通过“做题、想题、改题、编题、说题”等一系列活动,将教师的“教”、学生的“学”与研究“考试命题”三者结合。开展说题活动能促进教师加强对试题的研究,从而把握考题的趋势与方向,用以指导课堂教学,提高课堂教学的针对性和有效性。“说题”不同于以往的“说课”,从“说课”到“说题”,没有了“探”的束手束脚,直接进入了“究”的境界,让你有种一步跨进课的最深处的感觉,是教研活动的极大的进步。一、“说题”要注重“题”的选择 美国数学家哈尔斯说:“问题是数学的心脏”。没有好的问题就没有异彩纷呈的数学,没有好的问题去引领学生的学,就没有数学课堂的精彩。教师教的“有效”要通过“好题”的深入浅出,落实学生学的“有效”。说题的内涵不是“拿嘴拿题来说”,而是“用心用题去教”。因此,说题中的“题”更要精选,这个“题”,应该是“一只产金蛋的母鸡”。二、“说题”之“五说” 教师说题不能仅停留在“从解题角度说题”这种浅表的意义上,要从“构建主义的教学观点上看说题”。我个人认为,应从这样的五个方面进行“说题”。即一说“题目立意”、二说“试题解法”、三说“数学思想方法”、四说“背景来源”、五说“拓展引申”。说 题 稿 东北育才学校 王成栋问题出处:2011年高考数学辽宁理科第21题已知函数(I)讨论的单调性;(II)设,证明:当时,;(III)若函数的图像与轴交于两点,线段中点的横坐标为,证明:说题目立意(1)考查求导公式(包括形如的复合函数求导)及导数运算法则;(2)考查对数的运算性质;(3)导数法判断函数的单调性;(4)考查用构造函数的方法证明不等式;(5)考查分类讨论、数形结合、转化划归思想。说解法()解:的定义域为, (解决函数问题,定义域优先的原则) (常见函数的导数公式及导数的四则运算)()若则,所以在单调递增;()若则由得,当时,当时,(导数法研究函数单调性,涉及分类讨论的思想)单调递增,在单调递减.综上,当时,在单调递增; 当时,单调递增,在单调递减.归纳小结:本小问属导数中常规问题,易错点有二:易错点一是忽略函数的定义域,易错点二是分类讨论的分类标准的选取。(II)分析:函数、导数综合问题中的不等式的证明,主要是构造函数的思想,利用所构造的函数的最值,来完成不等式的证明。形如“”的不等式叫二元的不等式,二元不等式的证明主要采用“主元法”。解析:方法一:构建以为主元的函数设函数 (构造函数体现划归的思想)则,(这是本题的难点,很多学生不知要吧朝何方象化简,由于要利用导数法求最值,所以应朝有利于求导的方向化简,另外考试大纲中明确对复合函数求导,只需掌握型。) (型的复合函数求导)当.故当, 方法二:构建以为主元的函数设函数,则由,解得当时,而,所以故当,归纳小结:无论是方法一还是方法二都采用了构造函数法证明不等式,解题中都体现了将不等式证明问题划归为函数最值的划归思想。()分析:判断的正负,由()中单调性,可知,即确定与的大小关系,又可等效成判断与的大小关系,根据()中不等式可确定与的大小关系,结合()中单调性,问题迎刃而解。解:由(I)可得,当的图像与x轴至多有一个交点,故,从而的最大值为不妨设 (结合图象分析更方便)由(II)得 (注意前后两问的衔接)又在单调递减所以 (利用函数性质脱掉函数符号)由(I)知, 归纳小结:本小问解决主要是建立在第()(II)问的基础之上的,分析问题中注意数形结合,解题时要有“回头看”的意识。完成本问很难说学生究竟用了什么方法,需要学生要对所学过的知识、方法要做到完全融会贯通,达到以“无法胜有法,以无招胜有招的境界,才有机会解决这个问题,是考查学生综合能力的体现。说数学思想方法数学思想:(1)分类讨论思想 (2)转化划归思想 (3)数形结合思想数学方法 :(1)导数法确定函数单调性 (2)构造函数法证明不等式 说试题背景来源 我认为,2011年辽宁省高考数学理科21题的题源与命题思想有两处:一方面来源于09、10年辽宁省高考数学理科第21题,另一方面来源于10年天津高考数学理科21题,首先将11年辽宁省理科21题与09、10年辽宁理科21题对比分析:20092011年,辽宁省理科数学第21题,均考查函数、导数、不等式的综合试题,从这三道试题来看,不难看出辽宁省高考数学命题在命题思路上继承与创新。首先从题干上分析:09年辽宁省理科21题题干:10年辽宁省理科21题题干: 11年辽宁省理科21题题干:这三年都以型出现,其中为对数的形式,为二次函数型。略有不同的的是参数出现的位置稍有不同。另外,从问题的初始问来看,均考查含参数的单调性的讨论,应该说,这是课改后辽宁高考数学在这类试题上命题思路上的延续与继承。从这三年的最后一问来看,09年(II)证明:若,则对于任意有10年(II)设.如果对任意,求的取值范围.11年(II)若函数的图像与轴交于两点,线段中点的横坐标为,证明:09年与10年问题本质相同,都是割线斜率或斜率的绝对值大于或大于等于某一常数(就是函数在某点处的导数),稍有不等同的只是问题形式,09年是不等式证明题,10年为不等式恒成立问题。11年在09年、10年基础之上有所创新与发展,将割线斜率变成了导数小于0,其实中的“0”在本题中仍为割线斜率,即曲线的割线的斜率为0,由此我们不难看出,出题人的命题思想与意图。另外,我们再来研究10年天津高考数学理科21题已知函数() 求函数的单调区间和极值;()已知函数的图象与函数的图象关于直线对称证明当时,; ()如果且证明与辽宁试题相比较,不同之处在函数种类不同,问题的实质及解法完全相同。 一般来说,高考试题来源可能有四个方面:一教材试题,二经典试题的改编,三往年高考试题的改编,四竞赛或高等数学试题的下放。通过以上两个方面对试题来源的分析,我们有充分的利由认为11年辽宁省试题来源于往年高考试题的改编。题目的几何背景:任何抽象的代数形式背后,都有其深刻的几何背景,本题的几何背景无论是函数还是其实都是先减后增的单峰函数,利用图象的对称平移变化,就能出现在的指定的某一范围下,两函数图象的端点处的函数值相同,图象有高低,也就产生了我们的试题中的第(II)问。由于为单峰函数,图像关于直线(为函数的极值点)不对称,导致直线(或轴)与曲线相交时,交点到直线的距离不等,进而出现重点在的右侧,也就出现试题中的第(III)问。说问题变式与拓展对于一个试题的变式无外乎从这两个方面入手,对其加以变式,一对题目的条件加以变式、二对题目的结论加以变式。基于以上想法,我主要从以下几个方面对试题加以变式。问题变式一:已知函数(III)若函数的图像与直线交于两点,线段中点的横坐标为,证明:编题意图:将特殊直线(或轴)变成一般的直线,体现从特殊到一般。问题变式二:已知函数,(III)若函数的图像与轴交于A,B两点,线段AB中点的横坐标为,证明:编题意图:要解决的问题不变,改编的是原函数,通过添加参数来改编试题,改变试题的难度。问题变式三:已知函数(1)求的单调区间;(2)求证:(3)设图象与直线的两交点分别为,中点横坐标为证明:编题意图:跳出所给函数,尝试在新函数下改编问题。问题变式四:已知函数,若函数的图象与轴交于两点、,且.若正常数满足.求证:.编题意图:将中点变成任意分点,来改编试题。专心-专注-专业

    注意事项

    本文(高中数学说题(共5页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开