欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学-高中数学公式大全(共104页).docx

    • 资源ID:15055446       资源大小:3.87MB        全文页数:104页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学-高中数学公式大全(共104页).docx

    精选优质文档-倾情为你奉上小学一至六年级数学公式大全时间:2011-08-08作者:来源:新东方论坛 1.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2.1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3.速度×时间=路程路程÷速度=时间路程÷时间=速度4.单价×数量=总价总价÷单价=数量总价÷数量=单价5.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6加数+加数=和和-一个加数=另一个加数7被减数-减数=差被减数-差=减数差+减数=被减数8因数×因数=积积÷一个因数=另一个因数9被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1.正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2.正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3.长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4.长方体V:体积s:面积a:长b:宽h:高(1)表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5.三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6.平行四边形s面积a底h高面积=底×高s=ah7.梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28圆形S面积C周长d=直径r=半径(1)周长=直径×=2××半径C=d=2r(2)面积=半径×半径×9.圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10.圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷311.和差问题的公式总数÷总份数=平均数(和+差)÷2=大数(和-差)÷2=小数12.和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)13.差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)14.植树问题:1)非封闭线路上的植树问题主要可分为以下三种情形:如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)#p#副标题#e#如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2)封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数15.盈亏问题:(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数16.相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间17.追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间18.流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷219.浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量20.利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)高中数学公式总结:高中数学必考公式大全集合基本初等函数函数应用空间几何体点、直线和平面的位置关系空间向量与立体几何直线与方程圆与方程圆锥曲线与方程统计概率离散型随机变量的分布列三角函数三角函数的图象与性质三角恒等变换解三角形平面向量数列不等式常用逻辑用语导数及其应用复数计数原理坐标系与参数方程高一高二数学公式:一、初中数学代数公式 1、乘法与因式分解 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2) 2、三角不等式 |a+b|a|+|b|a-b|a|+|b|a|b&lt;=&gt;-bab |a-b|a|-|b|-|a|a|a| 3、一元二次方程的解 -b+(b2-4ac)/2a-b-b+(b2-4ac)/2a 4、根与系数的关系 X1+X2=-b/a X1*X2=c/a注:韦达定理 5、判别式 b2-4a=0注:方程有相等的两实根 b2-4ac&gt;0注:方程有一个实根 b2-4ac&lt;0注:方程有共轭复数根 6、三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1-cosA)/2)sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2)cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA)tan(A/2)=-(1-cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA)ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB注:角B是边a和边c的夹角 圆的方程 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F&gt;0 立体体积与侧面积 直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h 正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2 圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*r a是圆心角的弧度数r&gt;0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式V=s*h圆柱体V=pi*r2h 二、初中几何公式 1、平行线证明 经过直线外一点,有且只有一条直线与这条直线平行 如果两条直线都和第三条直线平行,这两条直线也互相平行 同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行 两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补 2、全等三角形证明 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 边边边公理(SSS)有三边对应相等的两个三角形全等 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 3、三角形基本定理 定理1在角的平分线上的点到这个角的两边的距离相等 定理2到一个角的两边的距离相同的点,在这个角的平分线上 角的平分线是到角的两边距离相等的所有点的集合 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 推论1等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 推论3等边三角形的各角都相等,并且每一个角都等于60° 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 直角三角形 4、多边形定理 定理四边形的内角和等于360° 四边形的外角和等于360° 多边形内角和定理n边形的内角的和等于(n-2)×180° 推论任意多边的外角和等于360° 5、平行四边形证明与等腰梯形证明 平行四边形性质定理1平行四边形的对角相等 平行四边形性质定理2平行四边形的对边相等 平行四边形性质定理3平行四边形的对角线互相平分  矩形性质定理1矩形的四个角都是直角 矩形性质定理2矩形的对角线相等  等腰梯形性质定理等腰梯形在同一底上的两个角相等 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 推论1经过梯形一腰的中点与底平行的直线,必平分另一腰 推论2经过三角形一边的中点与另一边平行的直线,必平分第三边 7、相似三角形证明 相似三角形判定定理1两角对应相等,两三角形相似(ASA) 判定定理2两边对应成比例且夹角相等,两三角形相似(SAS) 判定定理3三边对应成比例,两三角形相似(SSS) 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 性质定理2相似三角形周长的比等于相似比 性质定理3相似三角形面积的比等于相似比的平方 8、弦和圆的证明 定理不在同一直线上的三点确定一个圆。 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2圆的两条平行弦所夹的弧相等 圆是以圆心为对称中心的中心对称图形 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 线与圆的位置关系 直线L和O相交dr 直线L和O相切d=r 直线L和O相离dr 圆与圆之间的位置关系 两圆外离dR+r两圆外切d=R+r 两圆相交R-rdR+r(Rr) 两圆内切d=R-r(Rr) 两圆内含dR-r(Rr)人教版初中数学推论总结:    1、同旁内角互补,两直线平行2、两直线平行,同位角相等3、两直线平行,内错角相等4、两直线平行,同旁内角互补5、定理三角形两边的和大于第三边6、推论三角形两边的差小于第三边7、三角形内角和定理三角形三个内角的和等于180°8、推论1直角三角形的两个锐角互余9、推论2三角形的一个外角等于和它不相邻的两个内角的和10、推论3三角形的一个外角大于任何一个和它不相邻的内角11、全等三角形的对应边、对应角相等12、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等13、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等14、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等15、边边边公理(SSS)有三边对应相等的两个三角形全等16、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等17、定理1在角的平分线上的点到这个角的两边的距离相等18、定理2到一个角的两边的距离相同的点,在这个角的平分线上19、角的平分线是到角的两边距离相等的所有点的集合20、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21、推论1等腰三角形顶角的平分线平分底边并且垂直于底边22、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23、推论3等边三角形的各角都相等,并且每一个角都等于60°24、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25、推论1三个角都相等的三角形是等边三角形26、推论2有一个角等于60°的等腰三角形是等边三角形27、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28、直角三角形斜边上的中线等于斜边上的一半29、定理线段垂直平分线上的点和这条线段两个端点的距离相等30、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32、定理1关于某条直线对称的两个图形是全等形33、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c237、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形38、定理四边形的内角和等于360°39、四边形的外角和等于360°40、多边形内角和定理n边形的内角的和等于(n-2)×180°41、推论任意多边的外角和等于360°42、平行四边形性质定理1平行四边形的对角相等43、平行四边形性质定理2平行四边形的对边相等44、推论夹在两条平行线间的平行线段相等45、平行四边形性质定理3平行四边形的对角线互相平分46、平行四边形判定定理1两组对角分别相等的四边形是平行四边形47、平行四边形判定定理2两组对边分别相等的四边形是平行四边形48、平行四边形判定定理3对角线互相平分的四边形是平行四边形49、平行四边形判定定理4一组对边平行相等的四边形是平行四边形50、圆是定点的距离等于定长的点的集合51、圆的内部可以看作是圆心的距离小于半径的点的集合52、圆的外部可以看作是圆心的距离大于半径的点的集合53、同圆或等圆的半径相等54、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆55、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线56、到已知角的两边距离相等的点的轨迹,是这个角的平分线57、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线58、定理不在同一直线上的三点确定一个圆。59、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧60推论1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧61、推论2圆的两条平行弦所夹的弧相等62、3圆是以圆心为对称中心的中心对称图形63、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等64、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等65、定理一条弧所对的圆周角等于它所对的圆心角的一半66、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等67、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径68、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形69、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角70、直线L和O相交d直线L和O相切d=r直线L和O相离d>r71、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线72、切线的性质定理圆的切线垂直于经过切点的半径73、推论1经过圆心且垂直于切线的直线必经过切点74、推论2经过切点且垂直于切线的直线必经过圆心75、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角76、圆的外切四边形的两组对边的和相等77、弦切角定理弦切角等于它所夹的弧对的圆周角78、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等79、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等80、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项81、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项82、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等83、如果两个圆相切,那么切点一定在连心线上84、定理相交两圆的连心线垂直平分两圆的公共弦85、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆常见初中数学公式及公式定理乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|a|+|b|a-b|a|+|b|a|b-bab |a-b|a|-|b|-|a|a|a| 一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a注:韦达定理 判别式 b2-4ac=0注:方程有两个相等的实根 b2-4>0注:方程有两个不等的实根 b2-4ac<0 抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h 正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2 圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*r a是圆心角的弧度数r&gt;0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式V=s*h圆柱体V=pi*r2h 常见的初中数学公式 1过两点有且只有一条直线 2两点之间线段最短 3同角或等角的补角相等 4同角或等角的余角相等 5过一点有且只有一条直线和已知直线垂直 6直线外一点与直线上各点连接的所有线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行 8如果两条直线都和第三条直线平行,这两条直线也互相平行 9同位角相等,两直线平行 10内错角相等,两直线平行 11同旁内角互补,两直线平行 12两直线平行,同位角相等 13两直线平行,内错角相等 14两直线平行,同旁内角互补 15定理三角形两边的和大于第三边 16推论三角形两边的差小于第三边 17三角形内角和定理三角形三个内角的和等于180° 18推论1直角三角形的两个锐角互余 19推论2三角形的一个外角等于和它不相邻的两个内角的和 20推论3三角形的一个外角大于任何一个和它不相邻的内角 21全等三角形的对应边、对应角相等 22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理(SSS)有三边对应相等的两个三角形全等 26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27定理1在角的平分线上的点到这个角的两边的距离相等 28定理2到一个角的两边的距离相同的点,在这个角的平分线上 29角的平分线是到角的两边距离相等的所有点的集合 30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33推论3等边三角形的各角都相等,并且每一个角都等于60° 34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35推论1三个角都相等的三角形是等边三角形 36推论2有一个角等于60°的等腰三角形是等边三角形 37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38直角三角形斜边上的中线等于斜边上的一半 39定理线段垂直平分线上的点和这条线段两个端点的距离相等 40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42定理1关于某条直线对称的两个图形是全等形 43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理n边形的内角的和等于(n-2)×180° 51推论任意多边的外角和等于360° 52平行四边形性质定理1平行四边形的对角相等 53平行四边形性质定理2平行四边形的对边相等 54推论夹在两条平行线间的平行线段相等 55平行四边形性质定理3平行四边形的对角线互相平分 56平行四边形判定定理1两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3对角线互相平分的四边形是平行四边形 59平行四边形判定定理4一组对边平行相等的四边形是平行四边形 60矩形性质定理1矩形的四个角都是直角 61矩形性质定理2矩形的对角线相等 62矩形判定定理1有三个角是直角的四边形是矩形 63矩形判定定理2对角线相等的平行四边形是矩形 64菱形性质定理1菱形的四条边都相等 65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1四边都相等的四边形是菱形 68菱形判定定理2对角线互相垂直的平行四边形是菱形 69正方形性质定理1正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1关于中心对称的两个图形是全等的 72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰 80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边 81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的 一半L=(a+b)÷2 S=L×h 83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d 84(2)合比性质如果ab=cd,那么(a±b)b=(c±d)d 85(3)等比性质如果ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab 86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91相似三角形判定定理1两角对应相等,两三角形相似(ASA) 92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS) 94判定定理3三边对应成比例,两三角形相似(SSS) 95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97性质定理2相似三角形周长的比等于相似比 98性质定理3相似三角形面积的比等于相似比的平方 99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109定理不在同一直线上的三点确定一个圆. 110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理一条弧所对的圆周角等于它所对的圆心角的一半 117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121直线L和O相交dr 直线L和O相切d=r 直线L和O相离dr 122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理圆的切线垂直

    注意事项

    本文(小学-高中数学公式大全(共104页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开