2017年陕西省中考数学试卷(共30页).docx
-
资源ID:15058162
资源大小:200.80KB
全文页数:30页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2017年陕西省中考数学试卷(共30页).docx
精选优质文档-倾情为你奉上2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1(3分)计算:(12)21=()A54 B14 C34 D0【考点】 有理数的混合运算【专题】 计算题;实数【分析】 原式先计算乘方运算,再计算加减运算即可得到结果【解答】 解:原式=141=34, 故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键2(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A BCD【考点】 简单组合体的三视图【分析】 根据从正面看得到的图形是主视图,可得答案【解答】 解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B【点评】 本题考查了简单组合体的三视图,从正面看得到的图形是主视图3(3分)若一个正比例函数的图象经过A(3,6),B(m,4)两点,则m的值为()A2 B8 C2 D8【考点】 一次函数图象上点的坐标特征【分析】 运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值【解答】 解:设正比例函数解析式为:y=kx,将点A(3,6)代入可得:3k=6,解得:k=2,函数解析式为:y=2x,将B(m,4)代入可得:2m=4,解得m=2,故选:A【点评】本题考查了一次函数图象上点的坐标特征解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题4(3分)如图,直线ab,RtABC的直角顶点B落在直线a上,若1=25°,则2的大小为()A55° B75° C65° D85°【考点】 平行线的性质【分析】 由余角的定义求出3的度数,再根据平行线的性质求出2的度数,即可得出结论【解答】解:1=25°,3=90°1=90°25°=65°ab,2=3=65°故选:C【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等5(3分)化简:xx-yyx+y,结果正确的是()A1 Bx2+y2x2-y2 Cx-yx+y Dx2+y2【考点】 分式的加减法【专题】 计算题;分式【分析】 原式通分并利用同分母分式的减法法则计算即可得到结果【解答】 解:原式=x2+xy-xy+y2x2-y2=x2+y2x2-y2 故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键6(3分)如图,将两个大小、形状完全相同的ABC和ABC拼在一起,其中点A与点A重合,点C落在边AB上,连接BC若ACB=ACB=90°,AC=BC=3,则BC的长为()A33 B6 C32 D21【考点】 勾股定理【分析】 根据勾股定理求出AB,根据等腰直角三角形的性质得到CAB=90°,根据勾股定理计算【解答】解:ACB=ACB=90°,AC=BC=3,AB=AC2+BC2=32,CAB=45°,ABC和ABC大小、形状完全相同,CAB=CAB=45°,AB=AB=32,CAB=90°,BC=CA2+B'A2=33,故选:A【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方7(3分)如图,已知直线l1:y=2x+4与直线l2:y=kx+b(k0)在第一象限交于点M若直线l2与x轴的交点为A(2,0),则k的取值范围是()A 2k2 B2k0 C0k4 D0k2【考点】 两条直线相交或平行问题;F8:一次函数图象上点的坐标特征【专题】 推理填空题【分析】 首先根据直线l2与x轴的交点为A(2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可【解答】 解:直线l2与x轴的交点为A(2,0),2k+b=0,&y=-2x+4&y=kx+2k 解得&x=4-2kk+2&y=8kk+2直线l1:y=2x+4与直线l2:y=kx+b(k0)的交点在第一象限,&4-2kk+20&8kk+20 解得0k2故选:D【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握8(3分)如图,在矩形ABCD中,AB=2,BC=3若点E是边CD的中点,连接AE,过点B作BFAE交AE于点F,则BF的长为()A 3102 B3105 C105 D355【考点】 相似三角形的判定与性质;LB:矩形的性质【分析】 根据SABE=12S矩形ABCD=3=12AEBF,先求出AE,再求出BF即可【解答】 解:如图,连接BE四边形ABCD是矩形,AB=CD=2,BC=AD=3,D=90°,在RtADE中,AE=AD2+DE2=32+12=10,SABE=12S矩形ABCD=3=12AEBF,BF=3105故选B【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型9(3分)如图,ABC是O的内接三角形,C=30°,O的半径为5,若点P是O上的一点,在ABP中,PB=AB,则PA的长为()A5 B532 C52 D53【考点】 三角形的外接圆与外心;KH:等腰三角形的性质【分析】 连接OA、OB、OP,根据圆周角定理求得APB=C=30°,进而求得PAB=APB=30°,ABP=120°,根据垂径定理得到OBAP,AD=PD,OBP=OBA=60°,即可求得AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA【解答】 解:连接OA、OB、OP,C=30°,APB=C=30°,PB=AB,PAB=APB=30°ABP=120°,PB=AB,OBAP,AD=PD,OBP=OBA=60°,OB=OA,AOB是等边三角形,AB=OA=5,则RtPBD中,PD=cos30°PB=32×5=532,AP=2PD=53,故选D【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键10(3分)已知抛物线y=x22mx4(m0)的顶点M关于坐标原点O的对称点为M,若点M在这条抛物线上,则点M的坐标为()A(1,5)B(3,13)C(2,8)D(4,20)【考点】 二次函数的性质【分析】 先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可【解答】 解:y=x22mx4=x22mx+m2m24=(xm)2m24点M(m,m24)点M(m,m2+4)m2+2m24=m2+4解得m=±2m0,m=2M(2,8)故选C【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M的坐标是解题的关键二、填空题(本大题共4小题,每小题3分,共12分)11(3分)在实数5,3,0,6中,最大的一个数是【考点】 实数大小比较【分析】 根据正数大于0,0大于负数,正数大于负数,比较即可【解答】 解:根据实数比较大小的方法,可得60-35,故实数5,-3,0,6其中最大的数是故答案为:【点评】 此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小12(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分A如图,在ABC中,BD和CE是ABC的两条角平分线若A=52°,则1+2的度数为B.317tan38°15(结果精确到0.01)【考点】 计算器三角函数;25:计算器数的开方;K7:三角形内角和定理【分析】 A:由三角形内角和得ABC+ACB=180°A=128°,根据角平分线定义得1+2=12ABC+12ACB=12(ABC+ACB);B:利用科学计算器计算可得【解答】 解:A、A=52°,ABC+ACB=180°A=128°,BD平分ABC、CE平分ACB,1=12ABC、2=12ACB,则1+2=12ABC+12ACB=12(ABC+ACB)=64°,故答案为:64°;B、317tan38°152.5713×0.78832.03,故答案为:2.03【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键13 (3分)已知A,B两点分别在反比例函数y=3mx(m0)和y=2m-5x(m52)的图象上,若点A与点B关于x轴对称,则m的值为【考点】 反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标【分析】 设A(a,b),则B(a,b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值【解答】 解:设A(a,b),则B(a,b),依题意得:&b=3ma&-b=2m-5a,所以3m+2m-5a=0,即5m5=0,解得m=1故答案是:1【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标根据题意得3m+2m-5a=0,即5m5=0是解题的难点14(3分)如图,在四边形ABCD中,AB=AD,BAD=BCD=90°,连接AC若AC=6,则四边形ABCD的面积为【考点】 全等三角形的判定与性质【分析】 作辅助线;证明ABMADN,得到AM=AN,ABM与ADN的面积相等;求出正方形AMCN的面积即可解决问题【解答】 解:如图,作AMBC、ANCD,交CD的延长线于点N;BAD=BCD=90°四边形AMCN为矩形,MAN=90°;BAD=90°,BAM=DAN;在ABM与ADN中,&BAM=DAN&AMB=AND&AB=AD,ABMADN(AAS),AM=AN(设为);ABM与ADN的面积相等;四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;22=36,2=18,故答案为:18【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形三、解答题(本大题共11小题,共78分)15(5分)计算:(2)×6+|32|(12)1【考点】 二次根式的混合运算;负整数指数幂【分析】 根据二次根式的性质以及负整数指数幂的意义即可求出答案【解答】 解: 原式=12+232=233=33【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型16 (5分)解方程:x+3x-32x+3=1【考点】 解分式方程【分析】 利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论【解答】 解: 去分母得,(x+3)22(x3)=(x3)(x+3),去括号得,x2+6x+92x+6=x29,移项,系数化为1,得x=6,经检验,x=6是原方程的解【点评】 此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程17(5分)如图,在钝角ABC中,过钝角顶点B作BDBC交AC于点D请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法)【考点】 作图基本作图【分析】 根据题意可知,作BDC的平分线交BC于点P即可【解答】 解:如图,点P即为所求【点评】本题考查的是作图基本作图,熟知角平分线的作法和性质是解答此题的关键18(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟(早锻炼:指学生在早晨7:007:40之间的锻炼)【考点】 频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数【分析】 (1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得【解答】 解:(1)本次调查的总人数为10÷5%=200,则2030分钟的人数为200×65%=130(人),D项目的百分比为1(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小19(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G求证:AG=CG【考点】 正方形的性质;KD:全等三角形的判定与性质【分析】 根据正方向的性质,可得ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案【解答】 证明: 四边形ABCD是正方形,ADF=CDE=90°,AD=CDAE=CF,DE=DF,在ADF和CDE中&AD=CD&ADF=CDE&DF=DE,ADFCDE(SAS),DAF=DCE,在AGE和CGF中,&GAE=GCF&AGE=CGF&AE=CF,AGECGF(AAS),AG=CG【点评】 本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质20(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米)(参考数据:sin23°0.3907,cos23°0.9205,tan23°0.4245,sin24°0.4067,cos24°0.9135,tan24°0.4452)【考点】 解直角三角形的应用仰角俯角问题【分析】 作BDMN,CEMN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论【解答】 解:如图,作BDMN,CEMN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在RtMBD中,MD=xtan23°,在RtMCE中,ME=xtan24°,MEMD=DE=BC,xtan24°xtan23°=1.71,x=0.7tan24°-tan23°,解得x34(米)答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米【点评】本题考查的是解直角三角形的应用仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键21(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种项目产量(斤/每棚)销售价(元/每斤)成本(元/每棚)香瓜 2000 12 8000甜瓜 4500 3 5000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元【考点】 一次函数的应用【分析】 (1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于建立不等式,即可确定出结论【解答】解: (1)由题意得,y=(2000×128000)x+(4500×35000)(8x)=7500x+68000,(2)由题意得,7500x+6800,x4415,x为整数,李师傅种植的8个大棚中,香瓜至少种植5个大棚【点评】 此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目22(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率【考点】 列表法与树状图法;X4:概率公式【分析】 (1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题【解答】 解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=12,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是12;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答23(8分)如图,已知O的半径为5,PA是O的一条切线,切点为A,连接PO并延长,交O于点B,过点A作ACPB交O于点C、交PB于点D,连接BC,当P=30°时,(1)求弦AC的长;(2)求证:BCPA【考点】 切线的性质【分析】 (1)连接OA,由于PA是O的切线,从而可求出AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度(2)由于AOP=60°,所以BOA=120°,从而由圆周角定理即可求出BCA=60°,从而可证明BCPA【解答】 解:(1)连接OA,PA是O的切线,PAO=90°P=30°,AOD=60°,ACPB,PB过圆心O,AD=DC在RtODA中,AD=OAsin60°=532AC=2AD=53(2)ACPB,P=30°,PAC=60°,AOP=60°BOA=120°,BCA=60°,PAC=BCABCPA【点评】 本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型24(10分)在同一直角坐标系中,抛物线C1:y=ax22x3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由【考点】 二次函数综合题【分析】 (1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标【解答】解:(1) C1、C2关于y轴对称,C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,a=1,n=3,C1的对称轴为x=1,C2的对称轴为x=1,m=2,C1的函数表示式为y=x22x3,C2的函数表达式为y=x2+2x3;(2) 在C2的函数表达式为y=x2+2x3中,令y=0可得x2+2x3=0,解得x=3或x=1,A(3,0),B(1,0);(3)存在AB的中点为(1,0),且点P在抛物线C1上,点Q在抛物线C2上,AB只能为平行四边形的一边,PQAB且PQ=AB,由(2)可知AB=1(3)=4,PQ=4,设P(t,t22t3),则Q(t+4,t22t3)或(t4,t22t3),当Q(t+4,t22t3)时,则t22t3=(t+4)2+2(t+4)3,解得t=2,t22t3=4+43=5,P(2,5),Q(2,5);当Q(t4,t22t3)时,则t22t3=(t4)2+2(t4)3,解得t=2,t22t3=443=3,P(2,3),Q(2,3),综上可知存在满足条件的点P、Q,其坐标为P(2,5),Q(2,5)或P(2,3),Q(2,3)【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键本题考查知识点较多,综合性较强,难度适中25(12分)问题提出(1)如图,ABC是等边三角形,AB=12,若点O是ABC的内心,则OA的长为;问题探究(2)如图,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由问题解决(3)某城市街角有一草坪,草坪是由ABM草地和弦AB与其所对的劣弧围成的草地组成,如图所示管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌)同时,再合理设计好喷灌龙头喷水的射程就可以了如图,已测出AB=24m,MB=10m,AMB的面积为96m2;过弦AB的中点D作DEAB交AB于点E,又测得DE=8m请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】 圆的综合题【分析】 (1)构建RtAOD中,利用cosOAD=cos30°=ADOA,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在RtAOD中,r2=122+(r8)2,解得:r=13根据三角形面积计算高MN的长,证明ADCANM,列比例式求DC的长,确定点O在AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论【解答】解:(1)如图1,过O作ODAC于D,则AD=12AC=12×12=6,O是内心,ABC是等边三角形,OAD=12BAC=12×60°=30°,在RtAOD中,cosOAD=cos30°=ADOA,OA=6÷32=43,故答案为:43;(2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD的面积平分,点O为矩形ABCD的对称中心,CQ=AP=3,过P作PMBC于点,则PM=AB=12,MQ=1833=12,由勾股定理得:PQ=PM2+MQ2=122+122=122;(3)如图3,作射线ED交AM于点CAD=DB,EDAB,AB是劣弧,AB所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r8,AD=12AB=12,在RtAOD中,r2=122+(r8)2,解得:r=13,OD=5,过点M作MNAB,垂足为N,SABM=96,AB=24,12ABMN=96,12×24×MN=96,MN=8,NB=6,AN=18,CDMN,ADCANM,DCMN=ADAN,DC8=1218,DC=163,ODCD,点O在AMB内部,连接MO并延长交AB于点F,则MF为草坪上的点到M点的最大距离,在AB上任取一点异于点F的点G,连接GO,GM,MF=OM+OF=OM+OGMG,即MFMG,过O作OHMN,垂足为H,则OH=DN=6,MH=3,OM=MH2+OH2=32+62=35,MF=OM+r=35+1319.71(米),答:喷灌龙头的射程至少为19.71米【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF专心-专注-专业