【doc】沙牌碾压混凝土拱坝温度徐变应力仿真计算.doc
【精品文档】如有侵权,请联系网站删除,仅供学习与交流【doc】沙牌碾压混凝土拱坝温度徐变应力仿真计算.精品文档.沙牌碾压混凝土拱坝温度徐变应力仿真计算2000年4月水利SHUILIXUEBAo第4期文章编号:0559.9350(2000)04.000107棚Cq沙牌碾压混凝土拱坝温度徐变应力仿真计算张涛,黄达壹王清湘,宋玉普(1大莲五磊点实验室,辽宁大连l16124)3l可王摘要:根据沙牌工程混凝土撩变试验资料,按混凝土固化徐变理论,分解了沙牌碾压混凝土擦变度函数,得到了沙牌混凝土粘弹性相变形,粘性相变形的数学表达式,提出了混凝土的非线性徐变应力计算方法;根据沙牌碾压混凝土拱坝的材料参数与环境参数,模拟了混凝土的施工过程,得到了沙牌碾压混凝土拱坝的三维温度场与三维应力场的仿真计算成果;比较了混凝土线性徐变应力理论与非线性徐变应力理论下拱冠剖面不同高程,不同部位太坝混凝土应力随时间的变化过程,得出了一些有意义的结论.可供太坝温控设计参考美蕾词:太坝仿真分析;温度应力;混凝土徐变;不可恢复徐变廖临呓'中圈号:Tv3一i标对不设横缝或横缝间距很大的碾压混凝土拱坝,无论是在施工期,还是在运行期,温度荷载所占的比例都相当高,且具有准周期荷载的特性.在计算混凝土温度徐变应力时,应该考虑混凝土不可恢复徐变对坝体应力状态的影响但由于混凝土不可恢复徐变的试验有一定的难度,一般的工程也不做,因此,从混凝土的已有徐变实验资料中,分离出其中的不可恢复部分,就具有重要的工程意义.Bazant固化徐变理论公式是从混凝土组成的微观机制出发,根据各组成材料的物理性质推导出来的.具有概念明确,参数较少,方程线性等优良性质.文献2通过对沙牌工程碾压混凝土徐变资料的拟合计算表明:该公式拟合效果良好,拟合参数唯一,各参数的重要性处于同一水平.不同龄期,不同持荷时间下,老化粘弹性相徐变(t,r),非老化粘弹性相徐变c(t,r),粘性流动相徐变(t,r)(不可复徐变)在混凝土总徐变C(t,r)中所占的比例,与工程试验资料基本吻合,可以用于建立混凝土非线性徐变理论模型.这种考虑了不可复徐变在不同应力水平下的非线性性质的理论公式,对研究大坝混凝土温度徐变应力具有一定的优势.因为,分缝很少的大体积混凝土在温升过程中的预压应力被混凝土后期温降拉应力逐渐消解直至反超的过程,呈现出一个典型的加载叉卸载的徐变应力问题,需要相应的非线性徐变理论来计算.1沙牌碾压混凝土徐变试验资料及其分解其中按照Bazant固化徐变理论公式,混凝土徐变度函数C(t,r)可以分解为(t,r)4-C(t,r)4-ci(,r)q2r(f,r).n+收稿日期:1999.09.16作者简介:张涛(1973一),女.大连理工大学博士生,事水工结构数值计算(1)(2)(3)(4)表1沙牌工程"碾压混凝土徐变度计算值与试验值单位:10MPom=(,r为混凝土的加载龄期,tr为混凝土的持荷时间;o,m,为经验系数;q2,q3,q4为对具体工程试验数据进行拟合时的拟合系数对于沙牌工程,其拟合结果为一:q2=133.23,q3=5.44,q4=7.98,变异系数%=O.065沙牌碾压混凝土徐变度试验值与按式(1)得到的计算值列于表l中.为了和现行规范比较,表1的括号中还给出了按朱伯芳公式¨得到的沙牌碾压混凝土徐变度计算值由表1可见:二者的拟合效果都相当好按照公式(2),(3),(4)分解式(1)得到的老化粘弹性项德变(f,r),非老化粘弹性项徐变c"(t,r),混凝土的不可复徐变,即粘性流动项徐变cs(r,r)见表2.从表2中可以得出如下结论:(1)老化粘弹性项徐变(r,r)在混凝土总徐变中,始终占有相当高的比例.究其自身的时问特性而言,短龄期混凝土的老化粘弹性项椽变所占比例很大,且随持荷时间的延长而下降;长龄期的混凝土与短龄期混凝土的性质一样,仅程度有所不同.(2)非老化粘弹性项徐变c(,r)随混凝土龄期的增长明显增长.其最大比值达0.350,随着持荷时间的增长,混凝土中的粘性项徐变增加,使c(f,r)在总徐变的比重下降.(3)混凝土的不可复徐变,即粘性流动项徐变(t,r)比较复杂总的来说,只要持荷时间不长,混凝土的徐变绝大部分是可以恢复的;不论何种龄期的混凝土,其不可复徐变随持荷龄期单调增加.最不可恢复的徐变出现在28d龄期开始加荷,持续时间叉很长的情况对90d以内开始加载的混凝土,只要其持荷时间超过l80d,其不可复徐变占总徐变的比例就是30%40%.这正是朱伯芳院士在1982年就预计过的结果¨2非线性徐变理论下拱坝温度应力三维有限元隐式解法文献1给出的非线性徐变理论的有限元列式及求解步骤是针对一维问题进行的.对碾压混凝土拱坝温度徐变应力的仿真计算,需要进行三维有限元计算因此,有必要建立混凝土固化徐变理论的三维有限元递推求解列式.一2一表2抄牌碾压混凝土各种徐变百分率随龄期与持荷时间变化规律3456802636892494_-i23培鲫60136838l;585928422333445鲫¨鲫7,84484;67788ii65455566781J;7帅¨¨龇%帅博,H鲫帅姗计算值2.1非线性徐变理论的控制方程在Bazant固化徐变理论的应力应变控制方程中,任意时刻混凝土的总应变向量e应满足:e-_a/En+e.,e=e+ca"(6)式中:e为混凝土的徐变应变向量;e为混凝土粘弹性相徐变应变向量;为混凝土粘性流动相徐变应变向量;e.为各种附加应变向量,包括混凝土自生体积变形,混凝土温度变化,混凝土微裂缝的扩展等引起的应变向量;为混凝土的宏观应力向量,a/E0为混凝土弹性相应变向量按混凝土固化徐变理论,粘弹性相和粘性相的微观应变率与宏观应变率的转换关系分别为:f)="=塞一=7):q(8)为第个Kalvin单元的阻尼时间(=1,-?N),F(d)为混凝土应力状态函数,d1为第一主应力(以压为正)对于应力应变控制方程(6),按增量法求解.在时段=+1一.(i=1,2,M)内(M为总求解步):d=D(Ac一e一e.)(9)式中:D=ED,D为常规的三维弹性矩阵.Aa,Ae为时段At内的应力增量向量和应变增量向量.e,e.分别为徐变应变增量向量和其他应变增量向量式(9)为有限元求解的控制方程.在沙牌碾压混凝土拱坝的仿真计算中,.为两计算时间步混凝土温差和自生体积变形引起的应变增量.徐变应力等效模量iIE为:E=耋E一l口,+1J'一'1(1/2卜口l+1/2,'【+,l+s21,:(),一力','(10)(11)(12)式(10)中,E为第个Kalvin单元的弹性模量;公式(11)表示+l/2时刻混凝土固相物的体积,为经验系数,m的意义同前;公式(12)表示应力水平函数和混凝土损伤度函数/-/对下一时间步应力增量的影响.为混凝土的单轴抗压强度F(+/2)代表了时刻t.+混凝土的最大主应力函数.为编程方便,将式(9)中徐变应变增量分解为体积和形状两部分,即:e:+FcO'l,i+l/2(+)F(al,iHm(+)砉()(1_砉()c(13)(14)(15)(16)(17)从式(9)中剔除了弹性应变后,得到了混凝土在此时段的徐变应变增量e将徐变应变增量一3一又分解为宏观体积徐变应变增量E:和宏观形状徐变应变增量E.依此类推,r,一分别代表微观体积徐变应变增量,微观形状徐变应变增量,依次代表i时刻混凝土的体积应力和偏应力,r依次代表i时刻第个Kevln元件的体积徐变应变和偏徐变应变,其递推公式为:羲(+鑫(+(18)(19)在混凝土泊松比u不变的情况下,三维状态下Kelvin元件的弹性常数为:而12o,G1(2o)一3(一)'2(+u)到此为止,对固化徐变理论的基本模型与有限元算法都作了简要的描述.下文将把这一理论应用到碾压混凝土拱坝的温度徐变应力仿真分析中,并将这种非线性徐变理论与文献6所建议的算法作一比较.3两种徐变理论计算结果比较拱坝的受力特性极其复杂.本文研究的重点集中在混凝土的温度徐变应力.为简化研究内容,设计单位制定的蓄水计划只作为温度场的边界条件在计算拱坝应力时,不考虑水荷载和自重荷载.选择的坝体结构形式最为简单,即为既不设横缝,也不设诱导缝的左右岸同时整体上升的坝体不分缝方式鉴于篇章限制,此次研究的部位也局限在拱冠剖面上下游面拱向应力,其高程在1762m,1798m,1850m,分别代表坝体下部,中部和顶部,位置见图12,表3拱冠剖面各高程上下游面单元编号图1沙牌碾压棍凝土拱坝上游面网格展开图2沙牌碾压混凝土拱坝拱冠剖面同格根据文献Is阐明的有限元差分法原理计算坝体温度场混凝土线性徐变理论下,按文献6:的隐式解法计算;混凝土非线性徐变理论下,按前文所述的格式计算.图3图8表示的为上述各单元拱向应力随时间的变化过程一共截取了十个时间输出步.在大坝完建后20d以前,时间步长为ld;在大坝完建20d后,时间步长为20d.总时间步为400.温度输出时间和应力输出的时间相同,分别为第160d,200d,240d,280d,320d,360d,490d,570d,730d,950d(以1998年10月15日为第1d).处于大坝上部的单元,因混凝土浇筑较晚,从第五个时间输出步上才有输出值.为了使用同一时间坐标,其前四个时间输出步上的值本来都为O,现取为第五个时间输出步上的输出值,以免在视觉上产生温度或温度应力变化的错觉.1口00-'tOO2011bb-3001002oo3Do40050060O7oo8OO9帅1000e一非线性撩查理论螋性镣变理论(单元号3112)(拉应力为正,压应力为负,下同)圈31762高程拱冠削面下游面应力对程线晕:0b一50_lj1fi0t0112CRI300451106舯7008舯90DI(一非线性椽变理论线性撩变理论(单元号19880)固51798高程拱冠剖面上游面应力过程线10D一i0目一m1)呈x一("】0l】:I(:l1)t(1020(I:)(140('5006017fKI(I900tfJlme一非线性镣变理论一线性榇变理论(单元号3024)圈41762高程拱冠剖面上游面应力过程线2鲫Od)s.061XI700Bo0tO00毒_非线性棕变理论.H线性棕变理论(单元号19761)圈61798高程拱冠剖面下游面应力过程线首先分析1762高程拱冠剖面上下游面拱向应力的情况该部分混凝土是在1998年l2月底完成的.在早期的温升阶段,两种理论的计算结果基本相同上下游面上都存储了很大的预压应力,尤以下游面为甚这与柱状法浇筑的常规混凝土有本质的区别.但经历了冬季的降温过程后,两种计算方法的差别在第600d以前逐渐加大;在第600d以后,差值基本保持稳定二者压应力的最大差值在IMPa左右,拉应力的虽大差值在0.450.5MPa之间.从图3图4上可以清楚地看出,非线性徐变理论计算的拉应力值较高这是因为考虑了不可恢复的徐变后,正向加载(以受压为正向加载,受拉为反向加载)的压应力储备略低,而反向加载时混凝土徐变能力减弱造成的结果.5重置珊瑚瑚翩.咖删删_._x0l'l050I,6I718OO900III"I非线性撩变理论-线性徐变理论(单元号45542)图71850高程拱冠剖面上游面应力过程线oo2o113舯呻5呻aO0T0oI啪fOliO鲁-非线性徐盘理论II-线性榇变理论(单元号45780)图81850高程拱冠剖面下游面应力过程线在图5图6上,我们看到了与图3图4类似的结果,只不过是这一高程拱圈较长,坝体稍薄,柔性较前者强,混凝土温升的预压应力较多地转移到坝体的两岸后期降温时,坝体中部全段面出现了较大的拉应力两种理论计算的混凝土拉应力差值较1762高程进一步加大.其中,按非线性徐变理论计算的最大拉应力较线性徐变理论的最大拉应力大0.65MPa,见图5和图6.这说明不考虑荷载的方向是不行的线性徐变理论的计算结果在混凝土先升温,后降温的条件下是不安全的.对于处在坝体上部的两个单元(单元号为45542和45780),线性徐变理论下的计算结果反而高于混凝土固化徐变理论的计算值,最大拉,压应力差值在(0.3-0.4)MPa之间考察图7图8即发现:这一部分混凝土是在1999年9月底浇筑的.该拱圈坝体很薄,混凝土散热较快,约在30d左右就达到了最高温度,而坝体下部混凝土一般要经过60d左右的升温后,才开始下降.所以,图7图8上反映出上下游表面混凝土从浇筑之El起,就处于降温阶段,而且速度较快,幅度较大线性徐变理论因没有考虑混凝土的流变性质,拉应力计算值较大,并在今后很长时间内,比非线性徐变理论计算的结果保持着(0.3-0.4)MPa拉应力的正差值这从另一个角度也说明在混凝土应力水平不高的情况下,两种徐变理论对老龄期的混凝土的温度徐变应力的计算基本上是相近的4结语碾压混凝土拱坝的温度徐变应力问题是我国在高拱坝中推广碾压混凝土材料筑坝技术的关键问题之一.从以前的"松弛系数法"或"等效模量法"到目前的"初应变仿真计算法",涉及很多理论上的困难.本文引入Bazant混凝土固化徐变理论,推导了非线性徐变理论的三维有限元列式,并将之用于沙牌碾压混凝土的仿真计算之中,结果发现:线性徐变理论与非线性徐变理论的计算结果存在着一定的差别.混凝土首先正向加载即混凝土首先受压然后受拉时,线性徐变理论的拉应力计算值与非线性徐变理论的计算结果最大有0.6MPa的负差别,使大坝偏于危险;混凝土首先反向加载即混凝土首先受拉然后受压时,线性徐变理论计算的拉应力结果与非线性徐变理论的计算结果最大有0.4MPa的正差别,使大坝偏于安全其中的关键在于:线性徐变理论没有考虑混凝土的不可以恢复徐变在不同应力水平下的非线性性质参考文献f11BazantzP,SantoshPT&slHanSolidificationthecryforcoicretecreep1:formulationJJournalofEngineeringMechanics.1989,33(8):1691I7032黄达海高碾压混凝土拱坝施工过程仿真分析D大连理工大学,199973水工混凝土结构设计规范S.DL/T50571996北京:中国电力出版社4朱伯芳混凝土徕变理论的几个问题J水利,1982,(3):35405朱伯芳有限单元法的原理与应用M北京:中国水利水电出版社,19986:朱伯芳.混凝土结构擦变分析的隐式解法J水利,1983,(5):5357SimulatinganalysisontemperaturecreepstressofShapaiRCCArchDamZHANGTa0,HUANGDahai,WANGQngxang,SONGYupu(DaliattUnisity"lethnology,Dalian116024,China)Abstract:BasedOnthecreepexperimentresultsofShapaiRCCconcreteandinlightofthesolidifieationtheoryofconcretecreep,themathematicalformulaforviseoelasticstrainofShapaiconcretearederivedandanonlinearmethodforcalculatingthetemperatureereepstressofthedamconcreteispresented.AccordingtothematerialparametersandsurroundinginformationoftheDam,the3-Dtemperatureandstressdistributionintheprocessofcorlstruetonaresimulated.Itisfc.undthatifthetemperatureofconcreterisesatfirstanddeclineslater,thetemperatureten?sionstresscalculatedbylineartheoryissmallerthanthatbynonlinearcreeptheory.ItiseoneludedthattheDOn?reversecreepingofconcretecannotheignoredinsimulatinganalysis.Keywords:damsimulatinganalysis;temperaturestress1concretecreep;nonreversecreep7