2015年高考新课标全国二卷数学理科.docx
精选优质文档-倾情为你奉上2015年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第卷(选择题)和第卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效。3.回答第卷时,将答案写在答题卡上,写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。第卷一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)已知集合,则 (A)-1,0 (B)0,1 (C)-1,0,1 (D)0,1,2(2)若a为实数,且(2+ai)(a-2i)=-4i,则a= (A)-1 (B)0 (C)1 (D)2(3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B)2007年我国治理二氧化硫排放量显现成效(C)2006年以来我国二氧化硫排放量呈减少趋势(D)2006年以来我国二氧化硫年排放量与年份正相关(4)已知等比数列满足,则 (A)21 (B)42 (C)63 (D)84(5)设函数则(A)3 (B)6 (C)9 (D)12(6)一个正方体被一个平面截去一部分之后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A)(B)(C)(D) (7)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=(A) (B)8 (C) (D)10(8)右边程序框图的算法思路源于我国古代数学名著九章算法中德“更相减损术”,执行该程序框图,若输入的a,b,分别为14,18,则输出的a=(A)0(B)2 (C)4(D)14(9)已知A,B是O的球面上两点,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为(A) (B) (C) (D)(10)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记。将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图像大致为(11)已知A,B为双曲线E的左,右顶点,点M在E上,为等腰三角形,且顶角为,则E的离心率为(A) (B)2 (C) (D)(12)设函数f(x)是奇函数f(x)的导函数,f(-1)=0,当x>0时,xf(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(A)(B) (C)(D)第卷本卷包括必考题和旋考题两部分。第13题第21题为必考题,每个试题考生都必须做答。第22题第24题为选考题,考生根据要求做答。二、 填空题:本大题共4小题。每小题5分(13)设向量a,b不平行,向量a+b与a+2b平行,则实数=_.(14)若x,y满足约束条件则z=x+y的最大值为_.(15)的展开式中x的奇数次幂项的系数之和为32,则a=_.(16)设的数列的前n项和,且,则=_.三、解答题:解答应写出文字部分解题过程和演算步骤。(17)(本小题满分12分)中,D是BC上的点,AD平分,面积是面积的2倍,()求; ()若AD=1,DC=,求BD和AC的长。(18)(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79()根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平绝值机分散成都(不要求计算出具体值,给出结论即可);A地区B地区456789()根据用户满意度评分,将用户的满意度从低到高分为三个等级;满意度评分低于70分70分至89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给的数据,以事件发生的频率作为相应事件发生的概率,求C的概率。(19)(本小题满分12分)如图,长方体ABCD-中,AB=16,BC=10,AA1=8,点E,F分别在,上,=4,过点E,F的平面与此长方体的面相交,交线围成一个正方体。DD1C1A1EFABCB1()在途中画出这个正方形(不必说明画法和理由);()求直线AF与平面所成角的正弦值。20(本小题满分12分)已知椭圆C:,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由。(21)(本小题满分12分)设函数()证明:f(x)在单调递减,在单调递增;()若对于任意,都有,求m的取值范围。请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分,做答时请写清题号。(22)(本小题满分10分)选修4-1:几何证明选讲如图,O为等腰三角形ABC内一点,与的底边BC交与点M,N两点,与底边上的高AD交与点G,且与AB,AC分别相切于点E,F两点。()证明:EF/BC;()若AG等于的半径,且,求四边形EBCF的面积。GAEFONDBCM(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x0y中,曲线C1:(t为参数,),其中.在意O为极点,x轴正半轴为极轴的极坐标系中,设曲线,。()求C1与C2交点的直角坐标;()若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值。(24)(本小题满分10分)选修4-5:不等式选讲设a,b,c,d均为正数,且a+b=c+d,证明:()若ab>cd,则;()是|a-b|<|c-d|的充要条件。参考答案一、选择题 15ABDBC,6-10DCBCB,11D,12A二、填空题13: 14: 15:3 16:三、解答题17. ()因为,所以在和中,由余弦定理得,由()知,所以18.()两地区用户满意度评分的茎叶图如下A地区B地区4567896 81 3 6 432 4 5 5 6 4 23 3 4 6 96 8 8 6 4 33 2 19 2 8 6 5 11 37 5 5 2表示事件:“B地区用户满意度等级为满意”则与独立,与独立,与互斥,由所给数据得,发生的概率分别为,故,故19. ()交线围成的正方形如图:()作,垂足为,则,因为为正方形,所以于是,所以以为坐标原点,的方向为轴的正方向,建立如图所示的空间直角坐标系,则,设是平面的法向量,则即所以可取又,故所以直线与平面所成角的正弦值为20. ()设直线,将代入得,故,于是直线的斜率,即所以直线的斜率与的斜率的乘积为定值()四边形能为平行四边形因为直线过点,所以不过原点且与有两个交点的充要条件是,由()得的方程为设点的横坐标为由得,即将点的坐标代入直线的方程得,因此四边形为平行四边形当且仅当线段与线段互相平分,即于是解得,因为,所以当的斜率为或时,四边形为平行四边形22. ()由于是等腰三角形,所以是的平分线又因为分别与、相切于、两点,所以,故从而()由()知,,,故是的垂直平分线,又是的弦,所以在上连接,则由等于的半径得,所以所以和都是等边三角形因为,所以,因为,所以于是,所以四边形的面积21.23. ()曲线的直角坐标方程为,曲线的直角坐标方程为联立解得或所以与交点的直角坐标为和()曲线的极坐标方程为,其中因此得到极坐标为,的极坐标为所以,当时,取得最大值,最大值为专心-专注-专业