2017年广东省深圳市南山区十校联考中考数学一模试卷(解析版)(共28页).doc
-
资源ID:15094329
资源大小:548KB
全文页数:28页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2017年广东省深圳市南山区十校联考中考数学一模试卷(解析版)(共28页).doc
精选优质文档-倾情为你奉上2017年广东省深圳市南山区十校联考中考数学一模试卷一、选择题(本部分共12小题,每小题3分,共36分每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)1下列四个数中,无理数是()ABC0D|2|2下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()ABCD3过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少吨二氧化碳的排放量,把数据用科学记数法表示为()A312×104B0.312×107C3.12×106D3.12×1074下列运算结果为a6的是()Aa2+a3Ba2a3C(a2)3Da8÷a25如图,AD是EAC的平分线,ADBC,B=30°,则C的度数为()A50°B40°C30°D20°6请仔细观察用直尺和圆规作一个角AOB等于已知角AOB的示意图,要说明DOC=DOC,需要证明DOCDOC,则这两个三角形全等的依据是()A边边边B边角边C角边角D角角边7对于双曲线y=,当x0时,y随x的增大而减小,则m的取值范围为()Am0Bm1Cm0Dm18某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人下面所列的方程组正确的是()ABCD9如图,AB为O的直径,点C在O上,若OCA=50°,AB=4,则的长为()ABCD10下列命题正确是()A点(1,3)关于x轴的对称点是(1,3)B函数 y=2x+3中,y随x的增大而增大C若一组数据3,x,4,5,6的众数是3,则中位数是3D同圆中的两条平行弦所夹的弧相等11下列图形都是由同样大小的小圆圈按一定规律组成的,其中第个图形中一共有6个小圆圈,第个图形中一共有9个小圆圈,第个图形中一共有12个小圆圈,按此规律排列,则第个图形中小圆圈的个数为()A21B24C27D3012如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EGCD交AF于点G,连接DG给出以下结论:DG=DF;四边形EFDG是菱形;EG2=GF×AF;当AG=6,EG=2时,BE的长为,其中正确的结论个数是()A1B2C3D4二、填空题(本题共4小题,每小题3分,共12分,请将正确的选项填在答题卡上)13分解因式:2x28=14小明用S2= (x13)2+(x23)2+(x103)3计算一组数据的方差,那么x1+x2+x3+x10=15如图,测量河宽AB(假设河的两岸平行),在C点测得ACB=30°,D点测得ADB=60°,又CD=60m,则河宽AB为m(结果保留根号)16如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为三、解答题(本大题共7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17计算:2cos60°(3)3+()0|2|18先化简,再求值:(1)÷,其中a=119“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50x606第2组60x708第3组70x8014第4组80x90a第5组90x10010请结合图表完成下列各题:(1)求表中a的值;频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率20如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k0)的图象与BC边交于点E(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,EFA的面积最大,最大面积是多少?21某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润22已知,如图(1),PAB为O的割线,直线PC与O有公共点C,且PC2=PA×PB,(1)求证:PCA=PBC;直线PC是O的切线;(2)如图(2),作弦CD,使CDAB,连接AD、BC,若AD=2,BC=6,求O的半径;(3)如图(3),若O的半径为,PO=,MO=2,POM=90°,O上是否存在一点Q,使得PQ+QM有最小值?若存在,请求出这个最小值;若不存在,说明理由23在平面直角坐标系中,抛物线y=ax25ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C(1)如图1,连接AC、BC,若ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PC,若BCP=2ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PHx轴于H点,点K在PH的延长线上,AK=KF,KAH=FKH,PF=4a,连接KB并延长交抛物线于点Q,求PQ的长2017年广东省深圳市南山区十校联考中考数学一模试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)1下列四个数中,无理数是()ABC0D|2|【考点】无理数【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【解答】解:A、是分数,是有理数,故选项不符合题意;B、是无理数,选项符合题意;C、0是整数,是有理数,选项不符合题意;D、|2|=2,是整数,是有理数,选项不符合题意故选B2下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()ABCD【考点】中心对称图形;轴对称图形【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A、不是轴对称图形,也不是中心对称图形故错误;B、不是轴对称图形,是中心对称图形故错误;C、是轴对称图形,也是中心对称图形故正确;D、是轴对称图形,不是中心对称图形故错误故选C3过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少吨二氧化碳的排放量,把数据用科学记数法表示为()A312×104B0.312×107C3.12×106D3.12×107【考点】科学记数法表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:=3.12×106,故选C4下列运算结果为a6的是()Aa2+a3Ba2a3C(a2)3Da8÷a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【分析】根据合并同类项、同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可【解答】解:A、a3÷a2不能合并,故A错误;B、a2a3=a5,故B错误;C、(a2)3=a6,故C错误;D、a8÷a2=a6,故D正确;故选D5如图,AD是EAC的平分线,ADBC,B=30°,则C的度数为()A50°B40°C30°D20°【考点】平行线的性质;角平分线的定义;三角形的外角性质【分析】由ADBC,B=30°利用平行线的性质即可得出EAD的度数,再根据角平分线的定义即可求出EAC的度数,最后由三角形的外角的性质即可得出EAC=B+C,代入数据即可得出结论【解答】解:ADBC,B=30°,EAD=B=30°又AD是EAC的平分线,EAC=2EAD=60°EAC=B+C,C=EACB=30°故选C6请仔细观察用直尺和圆规作一个角AOB等于已知角AOB的示意图,要说明DOC=DOC,需要证明DOCDOC,则这两个三角形全等的依据是()A边边边B边角边C角边角D角角边【考点】作图基本作图;全等三角形的判定【分析】由作法易得OD=OD,OC=OC,CD=CD,利用SSS得到三角形全等,由全等三角形的对应角相等【解答】解:由作法易得OD=OD,OC=OC,CD=CD,在ODC和ODC中,CODC'O'D'(SSS),DOC=DOC(全等三角形的对应角相等)故选A7对于双曲线y=,当x0时,y随x的增大而减小,则m的取值范围为()Am0Bm1Cm0Dm1【考点】反比例函数的性质【分析】根据反比例函数的单调性结合反比例函数的性质,即可得出反比例函数系数的正负,由此即可得出关于m的一元一次不等式,解不等式即可得出结论【解答】解:双曲线y=,当x0时,y随x的增大而减小,1m0,解得:m1故选D8某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人下面所列的方程组正确的是()ABCD【考点】由实际问题抽象出二元一次方程组【分析】设到井冈山的人数为x人,到瑞金的人数为y人,根据共34人进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,即可得出方程组【解答】解:设到井冈山的人数为x人,到瑞金的人数为y人,由题意得:故选B9如图,AB为O的直径,点C在O上,若OCA=50°,AB=4,则的长为()ABCD【考点】弧长的计算;圆周角定理【分析】直接利用等腰三角形的性质得出A的度数,再利用圆周角定理得出BOC的度数,再利用弧长公式求出答案【解答】解:OCA=50°,OA=OC,A=50°,BOC=100°,AB=4,BO=2,的长为: =故选:B10下列命题正确是()A点(1,3)关于x轴的对称点是(1,3)B函数 y=2x+3中,y随x的增大而增大C若一组数据3,x,4,5,6的众数是3,则中位数是3D同圆中的两条平行弦所夹的弧相等【考点】命题与定理【分析】根据关于x轴的对称点的特征,一次函数的性质,众数是,中位数的定义,圆的性质矩形判断即可【解答】解:A、点(1,3)关于x轴的对称点是(1,3),故错误;B、函数 y=2x+3中,y随x的增大而减小,故错误;C、若一组数据3,x,4,5,6的众数是3,则中位数是4.5,故错误;D、同圆中的两条平行弦所夹的弧相等,正确,故选:D11下列图形都是由同样大小的小圆圈按一定规律组成的,其中第个图形中一共有6个小圆圈,第个图形中一共有9个小圆圈,第个图形中一共有12个小圆圈,按此规律排列,则第个图形中小圆圈的个数为()A21B24C27D30【考点】规律型:图形的变化类【分析】仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可【解答】解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B12如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EGCD交AF于点G,连接DG给出以下结论:DG=DF;四边形EFDG是菱形;EG2=GF×AF;当AG=6,EG=2时,BE的长为,其中正确的结论个数是()A1B2C3D4【考点】相似三角形的判定与性质;菱形的判定;矩形的性质;翻折变换(折叠问题)【分析】先依据翻折的性质和平行线的性质证明DGF=DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF,连接DE,交AF于点O由菱形的性质可知GFDE,OG=OF=GF,接下来,证明DOFADF,由相似三角形的性质可证明DF2=FOAF,于是可得到GE、AF、FG的数量关系,过点G作GHDC,垂足为H利用(2)的结论可求得FG=4,然后再ADF中依据勾股定理可求得AD的长,然后再证明FGHFAD,利用相似三角形的性质可求得GH的长,最后依据BE=ADGH求解即可【解答】解:GEDF,EGF=DFG由翻折的性质可知:GD=GE,DF=EF,DGF=EGF,DGF=DFGGD=DF故正确;DG=GE=DF=EF四边形EFDG为菱形,故正确;如图1所示:连接DE,交AF于点O四边形EFDG为菱形,GFDE,OG=OF=GFDOF=ADF=90°,OFD=DFA,DOFADF=,即DF2=FOAFFO=GF,DF=EG,EG2=GFAF故正确;如图2所示:过点G作GHDC,垂足为HEG2=GFAF,AG=6,EG=2,20=FG(FG+6),整理得:FG2+6FG40=0解得:FG=4,FG=10(舍去)DF=GE=2,AF=10,AD=4GHDC,ADDC,GHADFGHFAD=,即=,GH=,BE=ADGH=4=故正确故选D二、填空题(本题共4小题,每小题3分,共12分,请将正确的选项填在答题卡上)13分解因式:2x28=2(x+2)(x2)【考点】因式分解提公因式法【分析】观察原式,找到公因式2,提出即可得出答案【解答】解:2x28=2(x+2)(x2)14小明用S2= (x13)2+(x23)2+(x103)3计算一组数据的方差,那么x1+x2+x3+x10=30【考点】方差【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和【解答】解:S2= (x13)2+(x23)2+(x103)3,平均数为3,共10个数据,x1+x2+x3+x10=10×3=30,故答案为:3015如图,测量河宽AB(假设河的两岸平行),在C点测得ACB=30°,D点测得ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号)【考点】解直角三角形的应用;勾股定理的应用【分析】先根据三角形外角的性质求出CAD的度数,判断出ACD的形状,再由锐角三角函数的定义即可求出AB的值【解答】解:ACB=30°,ADB=60°,CAD=30°,AD=CD=60m,在RtABD中,AB=ADsinADB=60×=30(m)故答案为:3016如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为y=x【考点】待定系数法求一次函数解析式【分析】设直线l和八个正方形的最上面交点为A,过A作ABOB于B,B过A作ACOC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式【解答】解:设直线l和10个正方形的最上面交点为A,过A作ABOB于B,B过A作ACOC于C,正方形的边长为1,OB=3,经过原点的一条直线l将这10个正方形分成面积相等的两部分,两边分别是5,三角形ABO面积是7,OBAB=7,AB=,OC=AB=,由此可知直线l经过(,3),设直线方程为y=kx(k0),则3=k,解得k=直线l解析式为y=x故答案为:y=x三、解答题(本大题共7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17计算:2cos60°(3)3+()0|2|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值【分析】直接利用特殊角的三角函数值以及零指数幂的性质以及负整数指数幂的性质化简求出即可【解答】解:2cos60°(3)3+()0|2|=2×+12=18先化简,再求值:(1)÷,其中a=1【考点】分式的化简求值【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可【解答】解:原式=÷=×=a+1当a=1时,原式=1+1=19“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50x606第2组60x708第3组70x8014第4组80x90a第5组90x10010请结合图表完成下列各题:(1)求表中a的值;频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图;加权平均数【分析】(1)根据题意和表中的数据可以求得a的值;由表格中的数据可以将频数分布表补充完整;(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率【解答】解:(1)由题意和表格,可得a=50681410=12,即a的值是12;补充完整的频数分布直方图如下图所示,(2)测试成绩不低于80分为优秀,本次测试的优秀率是:;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB)、(AC)、(AD)、(BA)、(BC)、(BD)、(CA)、(CB)、(CD)、(DA)、(DB)、(DC),所以小明和小强分在一起的概率为:20如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k0)的图象与BC边交于点E(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,EFA的面积最大,最大面积是多少?【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;二次函数的最值【分析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可【解答】解:(1)在矩形OABC中,OA=3,OC=2,B(3,2),F为AB的中点,F(3,1),点F在反比例函数y=(k0)的图象上,k=3,该函数的解析式为y=(x0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),SEFA=AFBE=×k(3k),=kk2=(k26k+99)=(k3)2+当k=3时,S有最大值S最大值=21某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润【考点】一次函数的应用;分式方程的应用【分析】(1)分式方程中的销售问题,题目中有两个相等关系,每台电冰箱的进价比每台空调的进价多400元,用80000元购进电冰箱的数量与用64000元购进空调的数量相等,用第一个相等关系,设每台空调的进价为m元,表示出每台电冰箱的进价为(m+400)元,用第二个相等关系列方程, =(2)销售问题中的确定方案和利润问题,题目中有两个不等关系,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,根据题意设出设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,列出不等式组,确定出购买电冰箱的台数的范围,从而确定出购买方案,再利用一次函数的性质确定出,当x=34时,y有最大值,即可【解答】解:(1)设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,根据题意得: =,解得:m=1600经检验,m=1600是原方程的解,m+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元(2)设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,则y=x+=50x+15000,根据题意得:,解得:33x40,x为正整数,x=34,35,36,37,38,39,40,合理的方案共有7种,即电冰箱34台,空调66台;电冰箱35台,空调65台;电冰箱36台,空调64台;电冰箱37台,空调63台;电冰箱38台,空调62台;电冰箱39台,空调61台;电冰箱40台,空调60台;y=50x+15000,k=500,y随x的增大而减小,当x=34时,y有最大值,最大值为:50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元22已知,如图(1),PAB为O的割线,直线PC与O有公共点C,且PC2=PA×PB,(1)求证:PCA=PBC;直线PC是O的切线;(2)如图(2),作弦CD,使CDAB,连接AD、BC,若AD=2,BC=6,求O的半径;(3)如图(3),若O的半径为,PO=,MO=2,POM=90°,O上是否存在一点Q,使得PQ+QM有最小值?若存在,请求出这个最小值;若不存在,说明理由【考点】圆的综合题【分析】(1)根据已知条件得到,推出PCAPBC,根据相似三角形的性质得到PCA=PBC,作直径CF,连接AF,则CAF=90°,得到PCA+FCA=90°,P过直径的一端点C,于是得到结论;(2)作直径BE,连接CE、AE则BCE=BAE=90°,推出AECD,得到=,根据勾股定理得到BE=2,于是得到结论;(3)取OM中点G,连接PG与O的交点就是符合条件的点Q,连接QO、QM,得到OG=OM=1,根据相似三角形的性质得到=,求得QG=QM,根据两点之间线段最短,即可得到结论【解答】(1)证明:PC2=PA×PB,CPA=BPC,PCAPBC,PCA=PBC,作直径CF,连接AF,则CAF=90°,F+FCA=90°,F=B,PCA=PBC,PCA+FCA=90°,PC经过直径的一端点C,直线PC是O的切线;(2)解:作直径BE,连接CE、AE则BCE=BAE=90°,CDAB,AECD,=,AD=CE=2,BC=6,在RtBCE中,由勾股定理得:BE2=CE2+BC2=22+62=40,BE=2,R=;(3)解:取OM中点G,连接PG与O的交点就是符合条件的点Q,连接QO、QM,MO=2,OG=OM=1,O的半径r=OQ=,OQ2=OGOM,MOQ=QOG,MOQQOG,=,QG=QM,PQ+QM=PQ+QG=PG,根据两点之间线段最短,此时PQ+QM=PQ+QG=PG最小,PQ+QM最小值为PG=23在平面直角坐标系中,抛物线y=ax25ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C(1)如图1,连接AC、BC,若ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PC,若BCP=2ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PHx轴于H点,点K在PH的延长线上,AK=KF,KAH=FKH,PF=4a,连接KB并延长交抛物线于点Q,求PQ的长【考点】二次函数综合题【分析】(1)通过解方程ax25ax+4a=0可得到A(1,0),B(4,0),然后利用三角形面积公式求出OC得到C点坐标,再把C点坐标代入y=ax25ax+4a中求出a即可得到抛物线的解析式;(2)过点P作PHx轴于H,作CDPH于点H,如图2,设P(x,ax25ax+4a),则PD=ax2+5ax,通过证明RtPCDRtCBO,利用相似比可得到(ax2+5ax):(4a)=x:4,然后解方程求出x即可得到点P的横坐标;(3)过点F作FGPK于点G,如图3,先证明HAP=KPA得到HA=HP,由于P(6,10a),则可得到10a=61,解得a=,再判断RtPFG单位等腰直角三角形得到FG=PG=PF=2,接着证明AKHKFG,得到KH=FG=2,则K(6,2),然后利用待定系数法求出直线KB的解析式为y=x4,再通过解方程组得到Q(1,5),利用P、Q点的坐标可判断PQx 轴,于是可得到QP=7【解答】解:(1)当y=0时,ax25ax+4a=0,解得x1=1,x2=4,则A(1,0),B(4,0),AB=3,ABC的面积为3,4OC=3,解得OC=2,则C(0,2),把C(0,2)代入y=ax25ax+4a得4a=2,解得a=,抛物线的解析式为y=x2+x2;(2)过点P作PHx轴于H,作CDPH于点H,如图2,设P(x,ax25ax+4a),则PD=4a(ax25ax+4a)=ax2+5ax,ABCD,ABC=BCD,BCP=2ABC,PCD=ABC,RtPCDRtCBO,PD:OC=CD:OB,即(ax2+5ax):(4a)=x:4,解得x1=0,x2=6,点P的横坐标为6;(3)过点F作FGPK于点G,如图3,AK=FK,KAF=KFA,而KAF=KAH+PAH,KFA=PKF+KPF,KAH=FKP,HAP=KPA,HA=HP,AHP为等腰直角三角形,P(6,10a),10a=61,解得a=,在RtPFG中,PF=4a=2,FPG=45°,FG=PG=PF=2,在AKH和KFG中,AKHKFG,KH=FG=2,K(6,2),设直线KB的解析式为y=mx+n,把K(6,2),B(4,0)代入得,解得,直线KB的解析式为y=x4,当a=时,抛物线的解析式为y=x2+x2,解方程组,解得或,Q(1,5),而P(6,5),PQx 轴,QP=72017年4月9日专心-专注-专业