八年级数学-平行四边形的性质、判定(共12页).doc
精选优质文档-倾情为你奉上第四章 四边形性质探索第一节 平行四边形的性质温故而知新温故1.两直线平行,同位角相等,内错角相等,同旁内角互补. 2.能够完全重合的两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等.知新1.定义:如图4.1-1所示,两组对边分别平行的四边形叫做 ,记作:“ ”,AC和BD是的两条 . 2.性质1:平行四边形的对边 3.性质2:平行四边形的对角 . 4.性质3:平行四边形的对角线互相 . 图4.1-15.一条直线上的任一点到另一条直线的垂线段的长度叫做两条平行线之间的距离. (会运用) 乐学好思1 如图4.1-1所示,平行四边形可以表示成一下几种形式? "”,”,” 思路分析: 应该用四个顶点的大写字母表示,并且要按照顺序依次书写,可顺时针方向表示,也可逆时针方向表示. 答案:"”,” 是错误的,”是正确的. 乐学好思2 如图4.1-1所示,平行四边形的两条对角线分成的所有三角形中,有多少对全等的三角形? 课堂研习一点即通知识全突破知识点1 探索平行四边形的性质,并且会运用 导航指数 方法一.情景设置1、做一做(让学生实际动手操作)用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180度,你能平移该纸片,使它与你画的平行四边形ABCD重合吗?(教师用几何画板平台展示整个旋转变化过程)2、讨论:(小组交流)(1)通过以上活动,你能得到哪些结论?(2)平行四边形ABCD对边、对角分别有什么关系?能用别的方法验证你的结论吗?温馨提示: 答案:通过旋转三角形得到结论:平行四边形的对边相等;平行四边形的对角相等方法二.问题导入图下图4.1-2是两组对边分别平行的四边形: 图4.1-2 即:ABCD,ADBC,那么(1)各对边之间有什么样的数量关系?为什么?(2)各对角之间有什么样的数量关系?为什么?(3)如果连结AC、BD,交点为O,如图4.1-3,那么AC、BD之间又有什么关系? 图4.1-3温馨提示:答案:解:(1)两组对边分别相等.理由如下:如图4.1-4,连结BD,ABCD,ADBC1=2,3=4又BD=DB, ABDCDB,AD=BC,AB=CD(2)两组对角分别相等由(1)ABDCDB,A=CABBC,A+ABC=180°,C+CDA=180°ABC=CDA(3)对角线互相平分由(1)AB=CD,3=4,AOB=CODAOBCOD,AO=OC,OB=OD由此得到,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.例题1 如图4.1-5,平行四边形ABCD中, E、 F是分别是AB、CD上的点,且AE=CF,试说明DE=BF,并写出推理过程.。 分析:引导学生进行思考:1)AD=BC吗? 2)A=C吗? 3)ADECBF吗?解题规律: 在平行四边形中,证明线段相等是很常见的一类问题,通常结合三角形全等和平行四边形的性质来说明推理.知识巧归纳 随堂小挑战1.如右图4.1-6,在ABCD中, AC 与BD交于O点,则下列结论中不一定成立的是( ) A、AB=CD B、AO=CO C、AC=BD D、BO=DO2.已知: ABCD中,则它的周长为 ( )图4.1-6A、 B、 C、 D、443. ABCD中,如果B=100°,那么A、D的值分别是( )AA=80°,D=100° B.A=100°,D=80°CB=80°,D=80° D.A=100°,D=100° 4. ABCD中,若AB=13,那么A=_,B=_,C=_,D=_.5.如图4.1-8, D,E,F分别在ABC的三边BC,AC,AB上,且DEAB, DFAC, EFBC,则图中共有_个平行四边形,分别是_. 图4.1-86.在平行四边形ABCD中(如图4.1-9),已知两条邻边的长度分别为30cm,25cm;求其他两条边的长度,以及它的周长. 图4.1-9 专心-专注-专业 课后温习各显神通牛刀初小试(时间:20分钟 满分:100分)班级:_ 姓名:_ 得分:_一、 选择题(每小题 3 分,共 24 分)1.关于平行四边形的性质,下面说法中不正确的为 ( )A、 两个邻角互补 B、两个邻角的平分线互相垂直C、一组对角的两条角平分线平行或重合。 D、任何一个外角大于与它不相邻的任何内角。2.在平行四边形ABCD中,B-A=20°,则D的度数是 ( )A. 80° B. 90° C. 100° D. 110°3.在ABCD中,ABCD的值可以是( )A.1234B.1221 C.1122D.21214.如图4.1-11,M是平行四边形ABCD的一边AD上的任意一点,若CMB的面积为S,CDM的面积为S1,ABM的面积为S2,则下列大小关系正确的为( ) A、S>S1+S2 B、S<S1+S2 图4.1-11C、S=S1+S2 D、无法确定 5.如图4.1-12,点E是ABCD的边BC上一点,DE=AD,AE、DC延长线交于F,ADE=,BEF等于( ) 图4.1-12A、 B、 C、 D、6、如图4.1-13,在平行四边形ABCD中,AEBC于点E,AFCD于点F,若AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为( ) A、24 B、36 C、40 D、48 图4.1-137.如图4.1-14,四边形ABCD是平行四边形,D=120°,CAD=32°.则ABC、CAB的度数分别为( )A.28°,120° B.120°,28° C.32°,120°D.120°,32° 图4.1-148.平行四边形的两邻边分别为3、4,那么其对角线必( )A.大于1 B.小于7 C.大于1且小于7D.小于7或大于1二、 填空题(每小题 3 分,共 18 分)9(广西钦州市2010年中考题)如图4.1-15,ABCD的对角线AC、BD相交于点O,点E是CD的中点,若AD4cm,则OE的长为 cm 图4.1-1510. 用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为_短边长为_.11.在平行四边形ABCD中,A : B=3:2,则C=_ 度,D=_度.12.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是_.13.在ABCD中,A=2B,则A=_度。14.从平行四边形的一个锐角顶点作它的两条高,如果这两条高的夹角为135o ,则这个平行四边形相邻两个内角的度数分别为 和 。 图4.1-16三、 解答题(15-18每小题 11 分,19小题14分,共 58分)15.平行四边形的周长为36 cm,一组邻边之差为4 cm,求平行四边形各边的长.16.如图4.1-17,在ABCD中,E、F分别是BC、AD上的点,且AECF,AE与CF相等吗?说明理由.图4.1-1717.如图4.1-18,在ABCD中,O是对角线AC、BD的交点,BEAC,DFAC,垂足分别为E、F.那么OE与OF是否相等?为什么?图4.1-1818.如图4.1-19,平行四边形ABCD的两条对角线AC,BD相交于O. 若平行四边形ABCD的周长是20cm,AOD的周长比ABO的周长大6cm.求AB,AD的长.图4.1-19图4.1-20FEDCBA19、如图4.1-20,已知ABC中,AB=AC=5,D是BC上一点,作DEAC交AB于E,作DFAC交AC于点F,求四边形DEAF的周长。(8分)20、如图4.1-21,平行四边形ABCD中,BE平分ABC,若AB=6 cm,BC=10cm,试求:(1)平行四边形ABCD的周长. (2)DE的长.(6分) 图4.1-2121、如图4.1-22,四边形ABCD是平行四边形,BDAD,求BC,CD及OB的长.图4.1-22 4.2平行四边形的判别(1)教学目标:认知目标: 平行四边形的判别方法1。平行四边形的判别方法2。二、教学重点、难点:重点: 平行四边形的判别条件。 难点: 平行四边形的判别条件的应用。三、教学过程设计:【情境】:上节课我们探讨了平行四边形的定义和性质,现在来复习一下。结合学生回答,课件显示平行四边形的性质。2.【动手操作】:现在拿出一长一短的两根小木棒,来拼一个平行四边形。用量角器等工具检测所拼四边形是否是平行四边形。提问:若这两根小木棒不作为对角线,能确定平行四边形吗?若不行,能拼出一个特殊的四边形吗?那怎样改变一个条件,就能确定平行四边形?(4)用两根一样长的小木棒,来拼一个平行四边形。通过观察图形,得出:两条对角线互相平分的四边形是平行四边形。一组对边平行且相等的四边形是平行四边一组对边平行且相等的四边形是平行四边形。(两组对边分别相等的四边形是平行四边形。)3【例题精析】: 例1如图,ACED,点B在AC上且AB=ED=BC,找出图中的平行四边形 例1图 例2图例2如图所示,在ABCD中,AC、BD相交于点O,点E、F在对角线AC上,且OE=OF.(1)OA与OC、OB与OD相等吗?(2)四边形BFDE是平行四边形吗?若点E、F在OA、OC的中点上,你能解决(1)(2)两问吗?4.【随堂练习】:下列两个图形,可以组成平行四边形的是( ) A.两个等腰三角形B. 两个直角三角形C. 两个锐角三角形D. 两个全等三角形能确定四边形是平行四边形的条件是( )A.一组对边平行,另一组对边相等 B. 一组对边平行,一组对角相等C. 一组对边平行,一组邻角相等 D. 一组对边平行,两条对角线相等已知:四边形ABCD中,ABCD,要使四边形ABCD为平行四边形,需添加一个条件是: (只需填一个你认为正确的条件即可)。 4.2平行四边形的判别(2)教学目标:1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。3、在探索过程中发展学生的合理推理意识、主动探究的习惯。 4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。 教学重点:平行四边形的判别方法。教学难点:根据判别方法进行有关的应用 教学过程:一、快速反应1、如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是_,根据是_2、如图,四边形ABCD中,AB/CD,且AB=CD,则四边形ABCD是_,理由是_3、小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗? 结论:两组对边分别相等的四边形是平行四边形。 4、在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。图中有哪些互相平行的线段? 二、议一议1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗? 不一定。如等腰梯形。三、平行四边形的判别方法:(1)两组对边分别平行的四边形是平行四边形。(2)两组对边分别相等的四边形是平行四边形。(3)一组对边平行且相等的四边形是平行四边形。(4)两条对角线互相平分的四边形是平行四边形。 四、练一练:1、有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?不一定,如 2、比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。 一、选择题1.能够判别一个四边形是平行四边形的条件是( )A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行2.下列条件中不能确定四边形ABCD是平行四边形的是( )A.AB=CD,ADBCB.AB=CD,ABCDC.ABCD,ADBCD.AB=CD,AD=BC3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°4.四边形ABCD中,ADBC,要判别四边形ABCD是平行四边形,还需满足条件( )A.A+C=180°B.B+D=180°C.A+B=180°D.A+D=180°5.以不在一条直线上的三点A、B、C为顶点的平行四边形共有( )A.1个B.2个C.3个D.4个二、填空题6.四边形ABCD中,对角线AC、BD相交于点O,要判别它是平行四边形,从四边形的角的关系看应满足_;从对角线看应满足_.7.将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为_.8.四边形ABCD中,AD=BC,BD为对角线,ADB=CBD,则AB与CD的关系是_.9.ABCD中,对角线AC、BD相交于点O,E、F分别是OB、OD的中点,四边形AECF是_.10.如图,DEBC,AE=EC,延长DE到F,使EF=DE,连结AF、FC、CD,则图中四边形ADCF是_.三、解答题11.在ABCD中,点M、N在对角线AC上,且AM=CN,四边形BMDN是平行四边形吗?为什么?12.如图,ABCD中,E、F分别在BA、DC的延长线上,且AE=AB,CF=CD,AF和CE的关系如何?说明理由.13.如图,D、E是ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?14.如图,ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由.15.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?16、如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?说明理由.17、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.4.3菱形1 一、选择题1.下列命题中,真命题是( )A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形2.菱形的周长为12 cm,相邻两角之比为51,那么菱形对边间的距离是( )A.6 cmB.1.5 cmC.3 cmD.0.75 cm3.在菱形ABCD中,AEBC于点E,AFCD于点F,且E、F分别为BC、CD的中点,(如图1)则EAF等于( )A.75°B.60°C.45°D.30° 图1 图24.已知菱形ABCD中,AEBC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为( )A.12B.8C.4D.25.菱形的边长是2 cm,一条对角线的长是2 cm,则另一条对角线的长是( )A.4 cmB. cmC.2 cmD.2 cm二、判断正误:(对的打“”错的打“”)1.两组邻边分别相等的四边形是菱形.( )2.一角为60°的平行四边形是菱形.( )3.对角线互相垂直的四边形是菱形.( )4.菱形的对角线互相垂直平分.( )三、填空题1.如图3,菱形ABCD中,AC、BD相交于O,若OD=AD,则四个内角为_. 图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a时,如图4,其他三边长为_;周长为_.3.菱形ABCD中,AC、BD相交于O点,若OBC=BAC,则菱形的四个内角的度数为_.4.若菱形的两条对角线的比为34,且周长为20 cm,则它的一组对边的距离等于_ cm,它的面积等于_ cm2.5.菱形ABCD中,如图5,BAD=120°,AB=10 cm,则AC=_ cm,BD=_ cm. 图5 图6四、已知:ABC中,CD平分ACB交AB于D,DEAC交BC于E,DFBC交AC于F.求证:四边形DECF是菱形.五、已知ABCD中,BE平分ABC交AD于E,若CE平分DCB,且AB=2,求:ABCD的其余边长. 图74.3菱形2一、选择题1.菱形具有而一般平行四边形不具有的性质是( )A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是( )A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是( )A.168 cm2B.336 cm2C.672 cm2D.84 cm24.菱形的周长为16,两邻角度数的比为12,此菱形的面积为( )A.4B.8C.10D.125.下列语句中,错误的是( )A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是_.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为_.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为_,边长为_.10.菱形的面积为8平方厘米,两条对角线的比为1,那么菱形的边长为_.三、解答题11.如图,AD是ABC的角平分线.DEAC交AB于E,DFAB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?13.菱形ABCD的周长为20 cm,两条对角线的比为34,求菱形的面积.14.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.