考研数学高数习题—微分中值定理(共5页).docx
-
资源ID:15107522
资源大小:180.62KB
全文页数:5页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
考研数学高数习题—微分中值定理(共5页).docx
精选优质文档-倾情为你奉上一份好的考研复习资料,会让你的复习力上加力。中公考研辅导老师为考生准备了【高等数学-微分中值定理知识点讲解和习题】,同时中公考研网首发2017考研信息,2017考研时间及各科目复习备考指导、复习经验,为2017考研学子提供一站式考研辅导服务。模块六 微分中值定理1、 在区间上,判断下列函数是否满足罗尔定理及拉格朗日中值定理的条件,并说明理由。(1) (2)(3) (4)2、假设为定义在上的可导函数,判断下列函数中一定在区间上满足罗尔定理及拉格朗日中值定理的有哪些,并说明理由。(1) (2)(3) (4)3、假设可导并且在处取极值,证明:。4、假设在上连续,在上可导,且,证明:,使得。5、假设在上连续,在上可导,且,证明:,使得。6、假设在上连续,在上可导,证明:,使得。7、不用求出函数的导数,说明方程的实根个数并指明它们所在的区间。提示:次多项式至多有个不同的实根。8、设为定义在上的可导函数,且满足,证明:至多有一个实根。9、若函数在上具有二阶导数,并且,其中,证明:,使得。10、(1)假设,证明:;(2)证明:。11、证明恒等式:。参考答案1、(1)在区间上不满足罗尔定理的条件,也不满足拉格朗日中值定理的条件。因为在处不可导。(2)在区间上不满足罗尔定理的条件,也不满足拉格朗日中值定理的条件。在处非左连续。(3)在区间上不满足罗尔定理的条件,但满足拉格朗日中值定理的条件。因为在上连续,在上可导,但。(4)在区间上同时满足拉格朗日中值定理及罗尔定理的条件。因为在区间上连续,在区间上可导,并且。2、 (1)在区间上不一定满足罗尔定理的条件,也不一定满足拉格朗日中值定理的条件。因为在处不一定可导。(2)在区间上同时满足拉格朗日中值定理及罗尔定理的条件。因为在区间上连续,在区间上可导,并且。(3)在区间上不一定满足罗尔定理的条件,但一定满足拉格朗日中值定理的条件。因为在区间上连续,在区间上可导,但和不一定相等。(4)在区间上同时满足拉格朗日中值定理及罗尔定理的条件。因为在区间上连续,在区间上可导,并且。3、反证法假设,使得有,有有,由此可知不是的极值点,与题中已知矛盾,同理可证的情况,综上可知4、罗尔定理的证明;运用费马引理证明。5、提示:对运用罗尔定理。证明:在上连续,在上可导,由拉格朗日中值定理可知,必,使得。6、拉格朗日中值定理的证明,运用罗尔定理。7、有三个实根,分别在区间、及。8、提示:反证,假设有两个不同实根,再对运用罗尔定理。证明:假设有两个不同实根,则有,又由为定义在上的可导函数知在上连续,故由罗尔中值定理可知,必存在一点使得,与矛盾,故假设不成立,即至多有一个实根。9、提示:分别在区间和上运用一次罗尔定理,然后再上再运用一次罗尔中值定理。证明:由函数在上具有二阶导数,可知在上连续、上可导,且,由罗尔中值定理可知,至少存在一个使得,至少存在一个使得,故,再由罗尔中值定理可知至少存在一个使得,综上可知:,使得。10、(1)提示:对运用拉格朗日中值定理;证明:构建辅助函数,由在上连续,在上可导,通过拉格朗日中值定理可知,必存在一个使得,又为单调增函数,有,故有。(2)提示:对运用拉格朗日中值定理。证明:构造辅助函数,在上连续,在上可导,必存在一个使得,又,故,则有,即。11、提示:先验证的导数恒为以说明该函数恒为常数,再将取特殊值进一步说明该常数等于。证明:记,则,由此可知为常数,取特殊点有,即。在紧张的复习中,中公考研提醒您一定要充分利用备考资料和真题,并且持之以恒,最后一定可以赢得胜利。更多考研数学复习资料欢迎关注中公考研网。专心-专注-专业