欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    全等三角形难题超级好题汇总(共8页).doc

    • 资源ID:15128053       资源大小:451KB        全文页数:8页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    全等三角形难题超级好题汇总(共8页).doc

    精选优质文档-倾情为你奉上1.如图,已知等边ABC,P在AC延长线上一点,以PA为边作等边APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE; (2)试证明:EM-PM=AM.2、点C为线段AB上一点,ACM, CBN都是等边三角形,线段AN,MC交于点E,BM,CN交于点F。求证:(1)AN=MB.(2)将ACM绕点C按逆时针方向旋转一定角度,如图所示,其他条件不变,(1)中的结论是否依然成立? (3)AN与BM相交所夹锐角是否发生变化。 3.已知,如图所示,在和中,且点在一条直线上,连接分别为的中点(1)求证:;CENDABM图CAEMBDN图(2)在图的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立. 4、如图,以的边、为边分别向外作正方形和正方形,连结,试判断与面积之间的关系,并说明理由AGFCBDE(图)5、如图所示,已知ABC和BDE都是等边三角形,且A、B、D三点共线下列结论:AE=CD;BF=BG;HB平分AHD;AHC=60°,BFG是等边三角形;FGAD其中正确的有()A3个 B4个 C5个 D6个ABCDEF6. 如图所示,ABC是等腰直角三角形,ACB90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:ADCBDE7、已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证AECFBD图1图3ADFECBADBCE图2F当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、又有怎样的数量关系?请写出你的猜想,不需证明8.已知AC/BD,CAB和DBA的平分线EA、EB与CD相交于点E.求证:AB=AC+BD.9.如图1,BD是等腰的角平分线,.(1)求证BC=AB+AD;(2)如图2,于F,交延长线于E,求证:BD=2CE;ABCDFE图210、已知,如图1,在四边形ABCD中,BCAB,AD=DC,BD平分ABC。求证:BAD+BCD=180°。11、如图,四边形ABCD中,AC平分BAD,CEAB于E,AD+AB=2AE,则B与ADC互补.为什么?DBEAC12、.如图,在ABC中ABC,ACB的外角平分线交P.求证:AP是BAC的角平分线EBAC图2D13、如图在四边形ABCD中,AC平分BAD,ADCABC180度,CEAD于E,猜想AD、AE、AB之间的数量关系,并证明你的猜想,14、如图所示,已知在AEC中,E=90°,AD平分EAC,DFAC,垂足为F,DB=DC,求证:BE=CF15、如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60°,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;OPAMNEBCDFACEFBD图图图(2)如图,在ABC中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。16、ABC中,BAC=60°,C=40°,AP平分BAC交BC于P,BQ平分ABC交AC于Q,求证:AB+BP=BQ+AQ。17.问题背景,请你证明以上三个命题; 如图1,在正三角形ABC中,N为BC边上任一点,CM为正三角形外角ACK的平分线,若ANM=60°,则AN=NM 如图2,在正方形ABCD中,N为BC边上任一点,CM为正方形外角DCK的平分线,若ANM=90°,则AN=NM 如图3,在正五边形ABCDE中,N为BC边上任一点,CM为正五边形外角DCK的平分线,若ANM=108°,则AN=NM18.(1)如图,已知在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MNDM且交CBE的平分线于N试判定线段MD与MN的大小关系;(2)若将上述条件中的“M是AB的中点”改为“M是AB上或AB延长线上任意一点”,其余条件不变试问(1)中的结论还成立吗?如果成立,请证明;如果不成立,请说明理由19.如图,在ABC中,A=90°,D是AC上的一点,BD=DC,P是BC上的任一点,PEBD,PFAC,E、F为垂足求证:PE+PF=AB20.如图,已知ABC中,AB=AC=6cm,B=C,BC=4cm,点D为AB的中点(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD与CQP是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD与CQP全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,则经过 后,点P与点Q第一次在ABC的 边上相遇?(在横线上直接写出答案,不必书写解题过程)21、已知ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使DAF=60°,连接CF(1)如图1,当点D在边BC上时,求证:BD=CF;AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系22.().如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:AF=DE;AFDE.(不需要证明)(1)如图2,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF.则上面的结论、是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图3,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论、是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.23、如图,ABC中,ACB90°,ACBC,AE是BC边上的中线,过C作CFAE,垂足为F,过B作BDBC交CF的延长线于D求证:(1)AECD; (2)若AC12 cm,求BD的长 24、.已知BE,CF是ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系25、如图,AD/BC,AD=BC,AEAD,AFAB,且AE=AD,AF=AB,求证:AC=EF26、直线CD经过的顶点C,CA=CBE、F分别是直线CD上两点,且(1)若直线CD经过的内部,且E、F在射线CD上,请解决下面两个问题:如图1,若,则 (填“”,“”或“”号);如图2,若,若使中的结论仍然成立,则 与 应满足的关系是 ;(2)如图3,若直线CD经过的外部,请探究EF、与BE、AF三条线段的数量关系,并给予证明ABCEFDDABCEFADFCEB图1图2图327、如图,ABC是正三角形,BDC是顶角BDC120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN探究:线段BM、MN、NC之间的关系,并加以证明28、如图所示,已知ABC中,AB=AC,D是CB延长线上一点,ADB=60°,E是AD上一点,且DE=DB,求证:AC=BE+BC29、在ABC中,BD=DC,EDDF求证:BECFEF专心-专注-专业

    注意事项

    本文(全等三角形难题超级好题汇总(共8页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开