2017高考新课标全国3卷文科数学.doc
精选优质文档-倾情为你奉上2017年普通高等学校招生全国统一考试(新课标)文科数学一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合A=1,2,3,4,B=2,4,6,8,则AB中元素的个数为A1B2C3D42复平面内表示复数z=i(2+i)的点位于A第一象限B第二象限C第三象限D第四象限3某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A月接待游客逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4已知,则=A BC D5设x,y满足约束条件,则z=x-y的取值范围是A3,0B3,2C0,2 D0,36函数f(x)=sin(x+)+cos(x)的最大值为A B1C D 7函数y=1+x+的部分图像大致为A B C D8执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A5B4C3D29已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为ABC D10在正方体中,E为棱CD的中点,则ABCD11已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A B CD12已知函数有唯一零点,则a=ABCD1二、填空题:本题共4小题,每小题5分,共20分。13已知向量,且ab,则m= .14双曲线(a>0)的一条渐近线方程为,则a= .15ABC的内角A,B,C的对边分别为a,b,c。已知C=60°,b=,c=3,则A=_。16设函数则满足的x的取值范围是_。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)设数列满足.(1)求的通项公式;(2)求数列 的前n项和.18(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率19(12分)如图,四面体ABCD中,ABC是正三角形,AD=CD(1)证明:ACBD;(2)已知ACD是直角三角形,AB=BD若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比20(12分)在直角坐标系xOy中,曲线y=x2+mx2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.21(12分)已知函数=lnx+ax2+(2a+1)x(1)讨论的单调性;(2)当a0时,证明(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:(cos+sin)=0,M为l3与C的交点,求M的极径. 23选修45:不等式选讲(10分)已知函数=x+1x2.(1)求不等式1的解集;(2)若不等式x2x +m的解集非空,求m的取值范围.2017年普通高等学校招生全国统一考试文科数学试题3答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C二、填空题13. 2 14. 5 15. 75° 16. (-, )三、解答题17.解:(1)因为+3+(2n-1) =2n,故当n2时,+3+(-3) =2(n-1)两式相减得(2n-1)=2所以= (n2)又因题设可得 =2.从而 的通项公式为 =.(2)记 的前n项和为 ,由(1)知 = = - .则 = - + - + - = .18.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为, 所以这种酸奶一天的需求量不超过300瓶的概率估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900; 若最高气温位于区间 20,25),则Y=6300+2(450-300)-4450=300;若最高气温低于20,则Y=6200+2(450-200)-4450= -100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为 ,因此Y大于零的概率的估计值为0.8.19.解:(1)取AC的中点O连结DO,BO.因为AD=CD,所以ACDO. 又由于ABC是正三角形,所以ACBO.从而AC平面DOB,故ACBD.(2)连结EO.由(1)及题设知ADC=90°,所以DO=AO.在RtAOB中,.又AB=BD,所以,故DOB=90°.由题设知AEC为直角三角形,所以.又ABC是正三角形,且AB=BD,所以.故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,即四面体ABCE与四面体ACDE的体积之比为1:1.20.解:(1)不能出现ACBC的情况,理由如下:设,则满足所以.又C的坐标为(0,1),故AC的斜率与BC的斜率之积为,所以不能出现ACBC的情况.(2)BC的中点坐标为(),可得BC的中垂线方程为.由(1)可得,所以AB的中垂线方程为.联立又,可得所以过A、B、C三点的圆的圆心坐标为(),半径故圆在y轴上截得的弦长为,即过A、B、C三点的圆在y轴上的截得的弦长为定值.21.解:(1)f(x)的定义域为(0,+),.若a0,则当x(0,+)时,故f(x)在(0,+)单调递增.若a0,则当x时,;当x时,.故f(x)在单调递增,在单调递减.(2)由(1)知,当a0时,f(x)在取得最大值,最大值为.所以等价于,即设g(x)=lnx-x+1,则当x(0,1)时,;当x(1,+)时,.所以g(x)在(0,1)单调递增,在(1,+)单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0.所以当x0时,g(x)0,.从而当a0时,即.22.解:(1)消去参数t得的普通方程:; 消去参数m得的普通方程 :+2).设P(x,y),由题设得 消去k得 .所以C的普通方程为.(2)C的极坐标方程为 联立 得 故 ,从而, .代入 得=5,所以交点M的极径为 .23.解:(1)当x-1时,f(x)1无解;当时,由f(x)1得,2x-11,解得1x2;当时,由f(x)1解得x2.所以f(x)1的解集为x|x1.(2)由得m|x+1|-|x-2|-.而|x+1|-|x-2|-=,且当x=时,|x+1|-|x-2|-.故m的取值范围为(-.专心-专注-专业