2017江苏高考数学理科选修附加卷-极坐标与参数方程高考题汇编.doc
精选优质文档-倾情为你奉上附加题:极坐标与参数方程(2007)坐标系与参数方程:和的极坐标方程分别为()把和的极坐标方程化为直角坐标方程;()求经过,交点的直线的直角坐标方程(2008)坐标系与参数方程:已知曲线C1:,曲线C2: 。(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线,。写出,的参数方程。与公共点的个数和C1与C2公共点的个数是否相同?说明你的理由。(2009) 已知曲线C1: (t为参数), C2:(为参数)()化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;()若C1上的点P对应的参数为,Q为C2上的动点,求PQ中点M到直线 (t为参数)距离的最小值(2010)坐标系与参数方程:已知直线C1:(t为参数),圆C2:(为参数)(1)当时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点当变化时,求P点轨迹的参数方程,并指出它是什么曲线(2011)坐标系与参数方程:在直角坐标系xOy 中,曲线C1的参数方程为(为参数),M是C1上的动点,P点满足,P点的轨迹为曲线C2()求C2的方程()在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.(2012)已知曲线C1的参数方程是(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为(2,)()求点A、B、C、D 的直角坐标;()设P为C1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围。(2013课标1)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为。()把的参数方程化为极坐标方程;()求与交点的极坐标()。(2013课标2)已知动点都在曲线(为参数)上,对应参数分别为与(),为的中点。()求的轨迹的参数方程;()将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点。(2014课标1)已知曲线,直线(为参数)(1) 写出曲线的参数方程,直线的普通方程;(2)过曲线上任意一点作与夹角为30°的直线,交于点,求的最大值与最小值.(2014课标2)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,半圆的极坐标方程为.(1)求得参数方程;(2)设点在上,在处的切线与直线垂直,根据(1)中你得到的参数方程,确定的坐标.(2015课标1)在直角坐标系 中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I)求的极坐标方程.(II)若直线的极坐标方程为,设的交点为,求 的面积.(2015课标2)在直线坐标系xOy中,曲线C1:(t为参数,t0)其中0.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:p=2,C3:p=2。(I) 求C1 与C3 交点的直角坐标;(II) 若C1 与C2 相交于点A,C1 与C3 相交于点B,求|AB|的最大值.9.【2015高考新课标1,文23】选修4-4:坐标系与参数方程在直角坐标系 中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I)求的极坐标方程.(II)若直线的极坐标方程为,设的交点为,求 的面积.【答案】(),()【解析】试题分析:()用直角坐标方程与极坐标互化公式即可求得,的极坐标方程;()将将代入即可求出|MN|,利用三角形面积公式即可求出的面积.试题解析:()因为,的极坐标方程为,的极坐标方程为.5分 ()将代入,得,解得=,=,|MN|=,因为的半径为1,则的面积=.(23) 2014(本小题满分10分)选修4-4:坐标系与参数方程已知曲线,直线(为参数)(2) 写出曲线的参数方程,直线的普通方程;(3) 过曲线上任意一点作与夹角为30°的直线,交于点,求的最大值与最小值.解析(1)曲线C的参数方程为(为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任意一点P(2cos ,3sin )到l的距离为d=|4cos +3sin -6|,则|PA|=|5sin(+)-6|,其中为锐角,且tan =.当sin(+)=-1时,|PA|取得最大值,最大值为.当sin(+)=1时,|PA|取得最小值,最小值为.5.(2014课标,23,10分)选修44:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为=2cos ,.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.解析(1)C的普通方程为(x-1)2+y2=1(0y1).可得C的参数方程为(t为参数,0t).(2)设D(1+cos t,sin t).由(1)知C是以G(1,0)为圆心,1为半径的上半圆.因为C在点D处的切线与l垂直,所以直线GD与l的斜率相同.tan t=,t=.故D的直角坐标为,即.6.(2014辽宁,23,10分)选修44:坐标系与参数方程将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.解析(1)设(x1,y1)为圆上的点,经变换为C上点(x,y),依题意,得由+=1得x2+=1,即曲线C的方程为x2+=1.故C的参数方程为(t为参数).(2)由解得或不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为,所求直线斜率为k=,于是所求直线方程为y-1=,化为极坐标方程,并整理得2cos -4sin =-3,即=.例2 (2009·辽宁)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系曲线C的极坐标方程为cos1,M、N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求M、N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程2.解(1)由cos1得1.从而C的直角坐标方程为xy1,即xy2,当0时,2,所以M(2,0)当时,所以N.(2)M点的直角坐标为(2,0)N点的直角坐标为(0,)所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,(,)变式迁移2 (2010·东北三校第一次联考)在极坐标系下,已知圆O:cos sin 和直线l:sin(),(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的一个极坐标变式迁移2 解(1)圆O:cos sin ,即2cos sin ,圆O的直角坐标方程为x2y2xy,即x2y2xy0.直线l:sin(),即sin cos 1,则直线l的直角坐标方程为yx1,即xy10.(2)由得故直线l与圆O公共点的一个极坐标为(1,)9(12分)(2011·江苏)在平面直角坐标系xOy中,求过椭圆(为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程9解由题设知,椭圆的长半轴长a5,短半轴长b3,从而c4,所以右焦点为(4,0)将已知直线的参数方程化为普通方程:x2y20.(6分)故所求直线的斜率为,因此其方程为y(x4),(8分)即x2y40.(12分)10(12分)(2010·福建)在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为2sin .(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A,B.若点P的坐标为(3,),求|PA|PB|.10解方法一(1)2sin ,得x2y22y0,即x2(y)25.(4分)(2)将l的参数方程代入圆C的直角坐标方程,得(3t)2(t)25,即t23t40.(6分)由于(3)24×42>0,故可设t1,t2是上述方程的两实根,所以又直线l过点P(3,),故由上式及t的几何意义得|PA|PB|t1|t2|t1t23.(12分)方法二(1)同方法一(2)因为圆C的圆心为点(0,),半径r,直线l的普通方程为yx3.(8分)由得x23x20.解得或(10分)不妨设A(1,2),B(2,1),又点P的坐标为(3,),故|PA|PB|3.(12分)6.【2015高考陕西,文23】选修4-4:坐标系与参数方程在直角坐标版权法吕,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,的极坐标方程为.(I)写出的直角坐标方程;(II)为直线上一动点,当到圆心的距离最小时,求点的坐标.【答案】(I) ; (II) .【解析】试题分析:(I)由,得,从而有,所以(II)设,又,则,故当时,取得最小值,此时点的坐标为.试题解析:(I)由,得,从而有所以(II)设,又,则,故当时,取得最小值,此时点的坐标为.11(14分)(2010·课标全国)已知直线C1:(t为参数),圆C2:(为参数)(1)当时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点,当变化时,求P点轨迹的参数方程,并指出它是什么曲线11解(1)当时,C1的普通方程为y(x1),C2的普通方程为x2y21,联立方程组解得C1与C2的交点坐标为(1,0),(,)(7分)(2)C1的普通方程为xsin ycos sin 0.A点坐标为(sin2,cos sin ),故当变化时,P点轨迹的参数方程为(为参数)(9分)P点轨迹的普通方程为(x)2y2.(12分)故P点轨迹是圆心为(,0),半径为的圆(14分)专心-专注-专业