模数转换器ADC0809应用原理(共12页).doc
精选优质文档-倾情为你奉上1. 0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1)ADC0809的内部逻辑结构 由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (2) 引脚结构 IN0IN7:8条模拟量输入通道 ADC0809对输入模拟量要求:信号单极性,电压范围是05V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。 地址输入和控制线:4条 ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0IN7上的一路模拟量输入。通道选择表如下表所示。CBA选择的通道000IN0001IN1010IN2011IN3100IN4101IN5110IN6111IN7数字量输出及控制线:11条ST为转换启动信号。当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE1,输出转换得到的数据;OE0,输出数据线呈高阻状态。D7D0为数字量输出线。 CLK为时钟输入信号线。因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ, VREF(),VREF()为参考电压输入。 2 ADC0809应用说明 (1) ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。 (2) 初始化时,使ST和OE信号全为低电平。 (3) 送要转换的哪一通道的地址到A,B,C端口上。 (4) 在ST端给出一个至少有100ns宽的正脉冲信号。 (5) 是否转换完毕,我们根据EOC信号来判断。 (6) 当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。 3 实验任务 如下图所示,从ADC0809的通道IN3输入05V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。ADC0809的VREF接5V电压。 4 电路原理图 5.程序设计:(1) 进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。 (2) 进行A/D转换之前,要启动转换的方法: ABC110选择第三通道 ST0,ST1,ST0产生启动转换的正脉冲信号 .(3). 关于0809的计算:ad0809是根据逐位逼近的方法产生数据的。 参考电压为0-5V的话。以0809八位255的转换精度每一位的电压值为(5-0)/2550.0196V 设输入电压为X则: X-27*0.0196>=0则AD7=1否则AD7=0。 X-26*0.0196>=0则AD6=1否则AD6=0。 X-20*0.0196>=0则AD0=1否则AD0=0。 (27指2的7次方。26-20同理) 若参考电压为0-1V (1-0)/2550.0039V精度自然高了。可测量范围小了。 1)汇编源程序:CH EQU 30HDPCNT EQU 31HDPBUF EQU 33HGDATA EQU 32HST BIT P3.0OE BIT P3.1EOC BIT P3.2ORG 00HLJMP STARTORG 0BHLJMP T0XORG 30HSTART: MOV CH,#0BCHMOV DPCNT,#00HMOV R1,#DPCNTMOV R7,#5MOV A,#10MOV R0,#DPBUFLOP: MOV R0,AINC R0DJNZ R7,LOPMOV R0,#00HINC R0MOV R0,#00HINC R0MOV R0,#00HMOV TMOD,#01HMOV TH0,#(65536-4000)/256MOV TL0,#(65536-4000) MOD 256SETB TR0SETB ET0SETB EAWT: CLR STSETB STCLR STWAIT: JNB EOC,WAITSETB OEMOV GDATA,P0CLR OEMOV A,GDATAMOV B,#100DIV ABMOV 33H,AMOV A,BMOV B,#10DIV ABMOV 34H,AMOV 35H,BSJMP WTT0X: NOPMOV TH0,#(65536-4000)/256MOV TL0,#(65536-4000) MOD 256MOV DPTR,#DPCDMOV A,DPCNTADD A,#DPBUFMOV R0,AMOV A,R0MOVC A,A+DPTRMOV P1,AMOV DPTR,#DPBTMOV A,DPCNTMOVC A,A+DPTRMOV P2,AINC DPCNTMOV A,DPCNTCJNE A,#8,NEXTMOV DPCNT,#00HNEXT: RETIDPCD: DB 3FH,06H,5BH,4FH,66HDB 6DH,7DH,07H,7FH,6FH,00HDPBT: DB 0FEH,0FDH,0FBH,0F7HDB 0EFH,0DFH,0BFH,07FHEND2)C语言源程序#include unsigned char code dispbitcode=0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f;unsigned char code dispcode=0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00;unsigned char dispbuf8=10,10,10,10,10,0,0,0;unsigned char dispcount; sbit ST="P3"0;sbit OE="P3"1;sbit EOC="P3"2;unsigned char channel="0xbc"/IN3unsigned char getdata;void main(void)TMOD=0x01;TH0=(65536-4000)/256;TL0=(65536-4000)%256;TR0=1;ET0=1;EA=1;P3=channel;while(1)ST=0;ST=1;ST=0;while(EOC=0);OE=1;getdata=P0;OE=0;dispbuf2=getdata/100;getdata=getdata%10;dispbuf1=getdata/10;dispbuf0=getdata%10;void t0(void) interrupt 1 using 0TH0=(65536-4000)/256;TL0=(65536-4000)%256;P1=dispcodedispbufdispcount;P2=dispbitcodedispcount;dispcount+;if(dispcount=8)dispcount=0; 3)FPGA实现的程序:(verilog)moduleAD0809(clk, /脉宽(至少100ns) rst_n, EOC, /约100us后EOC变为高电平转换结束 START, /启动信号,上升沿有效(至少100ns) OE, /高电平打开三态缓冲器输出转换数据 ALE, /高电平有效,选择信道口 ADDA,/因为ADDB,ADDC都接地了,这里只有ADDA为变量 DATA,/ /转换数据 DATA_R);outputSTART,OE,ALE,ADDA;inputEOC,clk,rst_n;input7:0DATA;output7:0 DATA_R;regSTART,OE,ALE,ADDA;reg7:0DATA_R;reg4:0 CS,NS;parameter IDLE=5''b00001,START_H=5''b00010,START_L=5''b00100,CHECK_END=5''b01000,GET_DATA=5''b10000;always(*)case(CS)IDLE:NS=START_H;START_H:NS=START_L;START_L:NS=CHECK_END;CHECK_END:if(EOC)NS=GET_DATA;elseNS=CHECK_END;GET_DATA:NS=IDLE;default:NS=IDLE;endcasealways(posedge clk)if(!rst_n)CS<=IDLE;elseCS<=NS;always(posedge clk)case(NS)IDLE:beginOE<=0;START<=0;ALE<=0;ADDA<=1;endSTART_H:beginOE<=0;START<=1; /产生启动信号ALE<=1;ADDA<=1;/选择信道口IN0endSTART_L:beginOE<=0;START<=0;ALE<=1;/启动信号脉宽要足够长,在启动的时候ALE要一直有效endCHECK_END:beginOE<=0;START<=0;ALE<=0;endGET_DATA:beginOE<=1;/高电平打开三态缓冲器输出转换数据DATA_R<=DATA;/提取转换数据START<=0;ALE<=0;enddefault:beginOE<=0;START<=0;ALE<=0;ADDA<=0;endendcaseendmodule 4)FPGA实现的程序:(VHDL)LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY AD0809 IS PORT( D: IN STD_LOGIC_VECTOR(7 DOWNTO 0); CLK,EOC: IN STD_LOGIC; CLOCK:IN STD_LOGIC; ALE,START,OE,LOCK0: OUT STD_LOGIC; DOUT:OUT STD_LOGIC_VECTOR(6 DOWNTO 0); SEL:OUT STD_LOGIC_VECTOR(2 DOWNTO 0);END AD0809;ARCHITECTURE behav OF AD0809 ISTYPE states IS (st0,st1,st2,st3,st4); SIGNAL current_state,next_state:states:=st0; SIGNAL REGL :STD_LOGIC_VECTOR(7 DOWNTO 0);SIGNAL LOCK :STD_LOGIC; SIGNAL CNT1:STD_LOGIC_VECTOR(0 DOWNTO 0);SIGNAL A :INTEGER RANGE 0 TO 1;SIGNAL LOWDATA:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL HIGHDATA:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL LOWLED7S:STD_LOGIC_VECTOR(6 DOWNTO 0);SIGNAL HIGHLED7S:STD_LOGIC_VECTOR(6 DOWNTO 0);BEGINLOCK0<=LOCK; PROCESS(REGL) BEGIN LOWDATA<=REGL(3 DOWNTO 0); HIGHDATA<=REGL(7 DOWNTO 4); CASE LOWDATA IS WHEN "0000" => LOWLED7S<="" WHEN "0001" => LOWLED7S<="" WHEN "0010" => LOWLED7S<="" WHEN "0011" => LOWLED7S<="" WHEN "0100" => LOWLED7S<="" WHEN "0101" => LOWLED7S<="" WHEN "0110" => LOWLED7S<="" WHEN "0111" => LOWLED7S<="" WHEN "1000" => LOWLED7S<="" WHEN "1001" => LOWLED7S<="" WHEN "1010" => LOWLED7S<="" WHEN "1011" => LOWLED7S<="" WHEN "1100" => LOWLED7S<="" WHEN "1101" => LOWLED7S<="" WHEN "1110" => LOWLED7S<="" WHEN "1111" => LOWLED7S<="" WHEN OTHERS => Null; END CASE; CASE HIGHDATA IS WHEN "0000" => HIGHLED7S<="" WHEN "0001" => HIGHLED7S<="" WHEN "0010" => HIGHLED7S<="" WHEN "0011" => HIGHLED7S<="" WHEN "0100" => HIGHLED7S<="" WHEN "0101" => HIGHLED7S<="" WHEN "0110" => HIGHLED7S<="" WHEN "0111" => HIGHLED7S<="" WHEN "1000" => HIGHLED7S<="" WHEN "1001" => HIGHLED7S<="" WHEN "1010" => HIGHLED7S<="" WHEN "1011" => HIGHLED7S<="" WHEN "1100" => HIGHLED7S<="" WHEN "1101" => HIGHLED7S<="" WHEN "1110" => HIGHLED7S<="" WHEN "1111" => HIGHLED7S<="" WHEN OTHERS => Null; END CASE; END PROCESS;PROCESS(CLOCK) BEGIN IF CLOCK'EVENT AND CLOCK='1' THEN CNT1<=CNT1+1; END IF;END PROCESS;PROCESS(CNT1) BEGIN CASE CNT1 IS WHEN "0" =>SEL<="111" A<=0; WHEN "1" =>SEL<="110" A<=1; WHEN OTHERS =>NULL; END CASE;END PROCESS; PROCESS(A) BEGIN CASE A IS WHEN 0 =>DOUT<=LOWLED7S; WHEN 1 =>DOUT<=HIGHLED7S; WHEN OTHERS =>NULL; END CASE;END PROCESS;COM: PROCESS(current_state,EOC) BEGIN CASE current_state IS WHEN st0=>ALE<='0'START<='0'LOCK<='1'OE<='0'next_state<=st1; WHEN st1=>ALE<='1'START<='0'LOCK<='1'OE<='0'next_state<=st2; WHEN st2=>ALE<='0'START<='1'LOCK<='0'OE<='0' IF (EOC='1') THEN next_state<=st3; ELSE next_state<=st2; END IF; WHEN st3=>ALE<='0'START<='0'LOCK<='0'OE<='1'next_state<=st4; WHEN st4=>ALE<='0'START<='0'LOCK<='1'OE<='1'next_state<=st0; WHEN OTHERS=>next_state<=st0; END CASE;END PROCESS COM;REG: PROCESS(CLK) BEGIN IF(CLK'EVENT AND CLK='1') THEN current_state<=next_state; END IF;END PROCESS REG;LATCH1: PROCESS(LOCK) BEGIN IF LOCK='1' AND LOCK'EVENT THEN REGL<=D; END IF;END PROCESS LATCH1;END behav;专心-专注-专业