欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2011年—2018年新课标全国卷1文科数学分类汇编—10.解析几何(共17页).doc

    • 资源ID:15157576       资源大小:1.56MB        全文页数:17页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2011年—2018年新课标全国卷1文科数学分类汇编—10.解析几何(共17页).doc

    精选优质文档-倾情为你奉上2011年2018年新课标全国卷文科数学分类汇编10解析几何一、选择题(2018·新课标,文4) 已知椭圆:的一个焦点为,则的离心率为( )ABCD【2017,5】已知是双曲线的右焦点,是上一点,且与轴垂直,点的坐标是,则的面积为( )A B C D【2017,12】设A、B是椭圆C:长轴的两个端点,若C上存在点M满足AMB=120°,则m的取值范围是( )AB C D【2016,5】直线经过椭圆的一个顶点和一个焦点,若椭圆中心到的距离为其短轴长的,则该椭圆的离心率为( )A B C D【2015,5】已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C: y2=8x,的焦点重合,A,B是C的准线与E的两个交点,则|AB|=( ) A3 B6 C9 D12 【2014,10】已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=,则x0=( )A1 B2 C4 D8【2014,4】4已知双曲线的离心率为2,则a=( ) A2 B C D1【2013,4】已知双曲线C:(a0,b0)的离心率为,则C的渐近线方程为()Ay By Cy Dy±x【2013,8】O为坐标原点,F为抛物线C:y2的焦点,P为C上一点,若|PF|,则POF的面积为()A2 B C D4【2012,4】设、是椭圆E:()的左、右焦点,P为直线上一点,是底角为30°的等腰三角形,则E的离心率为( )A B C D【2012,10】等轴双曲线C的中心在原点,焦点在轴上,C与抛物线的准线交于A,B两点,则C的实轴长为( )A B C D【2011,4】椭圆的离心率为( )A B C D 【2011,9】已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,为的准线上一点,则的面积为( )A B C D 二、填空题(2018·新课标,文15)直线与圆交于,两点,则 .【2016,15】设直线与圆相交于两点,若,则圆 的面积为 【2015,16】已知F是双曲线C:的右焦点,P是C左支上一点,当APF周长最小时,该三角形的面积为 三、解答题(2018·新课标,文20) 设抛物线,点,过点的直线与交于,两点.(1)当与轴垂直时,求直线的方程;(2)证明:.【2017,20】设A,B为曲线C:上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且,求直线AB的方程【2016,20】在直角坐标系中,直线交轴于点,交抛物线于点,关于点的对称点为,连结并延长交于点(1)求;(2)除以外,直线与是否有其他公共点?请说明理由【2015,20】已知过点A(0, 1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.()求k的取值范围; ()=12,其中O为坐标原点,求|MN|.【2014,20】已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积.【2013,21】已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【2012,20】设抛物线C:()的焦点为F,准线为,A为C上一点,已知以F为圆心,FA为半径的圆F交于B,D两点。(1)若BFD=90°,ABD的面积为,求的值及圆F的方程;(2)若A,B,F三点在同一直线上,直线与平行,且与C只有一个公共点,求坐标原点到,距离的比值。【2011,20】在平面直角坐标系中,曲线与坐标轴的交点都在圆上(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值2011年2018年新课标全国卷文科数学分类汇编10解析几何(解析版)一、选择题(2018·新课标,文4)已知椭圆:的一个焦点为,则的离心率为( )ABCD【答案】C解析:根据题意,因为,所以,所以.【2017,5】已知是双曲线的右焦点,是上一点,且与轴垂直,点的坐标是,则的面积为( )A B C D【解法】选D由得,所以,将代入,得,所以,又A的坐标是(1,3),故APF的面积为,选D【2017,12】设A、B是椭圆C:长轴的两个端点,若C上存在点M满足AMB=120°,则m的取值范围是( )AB C D【解法】选A图 1 图 2解法一:设是椭圆C短轴的两个端点,易知当点是椭圆C短轴的端点时最大,依题意只需使1当时,如图1,解得,故;2 当时,如图2,解得综上可知,m的取值范围是,故选A解法二:设是椭圆C短轴的两个端点,易知当点是椭圆C短轴的端点时最大,依题意只需使1当时,如图1,即,带入向量坐标,解得,故;2 当时,如图2,即,带入向量坐标,解得综上可知,m的取值范围是,故选A【2016,5】直线经过椭圆的一个顶点和一个焦点,若椭圆中心到的距离为其短轴长的,则该椭圆的离心率为( )A B C D解析:选B 由等面积法可得,故,从而故选B【2015,5】已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C: y2=8x,的焦点重合,A,B是C的准线与E的两个交点,则|AB|=( ) A3 B6 C9 D12 解:选B抛物线的焦点为(2,0),准线为x=-2,所以c=2,从而a=4,所以b2=12,所以椭圆方程为,将x=-2代入解得y=±3,所以|AB|=6,故选B【2014,10】10已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=,则x0=( )AA1 B2 C4 D8解:根据抛物线的定义可知|AF|=,解之得x0=1 故选A【2014,4】4已知双曲线的离心率为2,则a=( ) DA2 B C D1解:,解得a=1,故选D【2013,4】已知双曲线C:(a0,b0)的离心率为,则C的渐近线方程为()Ay By Cy Dy±x解析:选C,即c2a2b2,双曲线的渐近线方程为,渐近线方程为故选C【2013,8】O为坐标原点,F为抛物线C:y2的焦点,P为C上一点,若|PF|,则POF的面积为()A2 B C D4答案:C解析:利用|PF|,可得xP,yPSPOF|OF|·|yP|故选C【2012,4】4设、是椭圆E:()的左、右焦点,P为直线上一点,是底角为30°的等腰三角形,则E的离心率为( )A B C D【解析】如图所示,是等腰三角形,又,所以,解得,因此,故选择C【2012,10】10等轴双曲线C的中心在原点,焦点在轴上,C与抛物线的准线交于A,B两点,则C的实轴长为( )A B C D【解析】设等轴双曲线C的方程为,即(),抛物线的准线方程为,联立方程,解得,因为,所以,从而,所以,因此C的实轴长为,故选择C【2011,4】椭圆的离心率为( )A B C D 【解析】选D因为中,所以,所以 【2011,9】已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,为的准线上一点,则的面积为( )A B C D 【解析】不妨设抛物线的标准方程为,由于垂直于对称轴且过焦点,故直线的方程为代入得,即,又,故,所以抛物线的准线方程为,故故选C 二、填空题(2018·新课标全国卷文15)直线与圆交于,两点,则 .【答案】解析:,圆心到直线的距离,则【2016,15】设直线与圆相交于两点,若,则圆的面积为 解析:由题意直线即为,圆的标准方程为,所以圆心到直线的距离,所以,故,所以故填【2015,16】已知F是双曲线C:的右焦点,P是C左支上一点,当APF周长最小时,该三角形的面积为 解: a=1,b2=8,Þ c=3,F(3,0)设双曲线的的左焦点为F1,由双曲线定义知|PF|=2+|PF1|,APF的周长为|PA|+|PF|+|AF|=|PA|+|AF|+|PF1|+2,由于|AF|是定值,只要|PA|+|PF1|最小,即A,P,F1共线,F1 (-3,0),直线AF1的方程为,联立8x2-y2=8消去x整理得y2+y-96=0,解得y=或y=(舍去),此时SAPF=SAFF1-SPFF1三、解答题(2018·新课标,文20) 设抛物线,点,过点的直线与交于,两点.(1)当与轴垂直时,求直线的方程;(2)证明:.解析:(1)当轴时,直线带入抛物线方程得:解得点M或M,或,所以直线BM得方程为:或.(2)【解法1】当斜率不存在时,M,N关于x轴对称,所以当斜率存在时,可设直线方程为,设点则:,.【解法2】依题意,直线斜率不为0,设直线方程为,设点,则:,.【解法3】当与轴垂直时, M,N关于x轴对称,所以,当不与轴垂直时,设,点A、M、N都在直线上,故有,即,从而解得,.【2017,20】设A,B为曲线C:上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且,求直线AB的方程解析:第一问:【解法1】设 ,AB 直线的斜率为k,又因为A,B都在曲线C上,所以 -得由已知条件所以,即直线AB的斜率k=1【解法2】设 ,AB 直线的方程为y=kx+b,所以整理得:且所以k=1 第二问:设 所以 又 所以所以M(2,1),且,即,设AB 直线的方程为,化简得,所以由得所以b=7或者b=-1(舍去)所以AB 直线的方程为y=x+7【2016,20】在直角坐标系中,直线交轴于点,交抛物线于点,关于点的对称点为,连结并延长交于点(1)求;(2)除以外,直线与是否有其他公共点?请说明理由解析 (1)如图,由题意不妨设,可知点的坐标分别为,从而可得直线的方程为,联立方程,解得,即点的坐标为,从而由三角形相似可知(2)由于,可得直线的方程为,整理得,联立方程,整理得,则,从而可知和只有一个公共点【2015,20】已知过点A(0, 1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.()求k的取值范围; ()=12,其中O为坐标原点,求|MN|.解:()依题可设直线l的方程为y=kx+1,则圆心C(2,3)到的l距离. 解得.所以k的取值范围是.()将y=kx+1代入圆C的方程整理得 (k2+1)x2-4(k+1)x+7=0.设M(x1, y1),N(x2, y2),则所以=x1x2+y1y2=x1x2+(kx1+1)(kx2+1)=(1+k2)x1x2+k (x1+x2)+1=12,解得k=1,所以l的方程为y=x+1.故圆心在直线l上,所以|MN|=2.【2014,20】已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积.【解析】(1)圆C的方程可化为,所以圆心为,半径为4,设,则,由题设知,故,即.由于点P在圆C的内部,所以M的轨迹方程是.(2)由(1)可知M的轨迹是以点为圆心,为半径的圆.由于,故O在线段PM的垂直平分线上,又P在圆N上,从而.因为ON的斜率为3,所以的斜率为,故的方程为.又,O到的距离为,所以的面积为.考点:1.曲线方程的求法;2.圆的方程与几何性质;3.直线与圆的位置关系【2013,21】已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.解:由已知得圆M的圆心为M(1,0),半径r11;圆N的圆心为N(1,0),半径r23.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|PN|(Rr1)(r2R)r1r24.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为(x2)(2)对于曲线C上任意一点P(x,y),由于|PM|PN|2R22,所以R2,当且仅当圆P的圆心为(2,0)时,R2.所以当圆P的半径最长时,其方程为(x2)2y24.若l的倾斜角为90°,则l与y轴重合,可得|AB|.若l的倾斜角不为90°,由r1R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q(4,0),所以可设l:yk(x4)由l与圆M相切得1,解得k.当k时,将代入,并整理得7x28x80,解得x1,2,所以|AB|x2x1|.当k时,由图形的对称性可知|AB|.综上,|AB|或|AB|.【2012,20】设抛物线C:()的焦点为F,准线为,A为C上一点,已知以F为圆心,FA为半径的圆F交于B,D两点。(1)若BFD=90°,ABD的面积为,求的值及圆F的方程;(2)若A,B,F三点在同一直线上,直线与平行,且与C只有一个公共点,求坐标原点到,距离的比值。【解析】(1)若BFD=90°,则BFD为等腰直角三角形,且|BD|=,圆F的半径,又根据抛物线的定义可得点A到准线的距离。因为ABD的面积为,所以,即,所以,由,解得。从而抛物线C的方程为,圆F的圆心F(0,1),半径,因此圆F的方程为。(2)若A,B,F三点在同一直线上,则AB为圆F的直径,ADB=90°,根据抛物线的定义,得,所以,从而直线的斜率为或。当直线的斜率为时,直线的方程为,原点O到直线的距离。依题意设直线的方程为,联立,得,因为直线与C只有一个公共点,所以,从而。所以直线的方程为,原点O到直线的距离。因此坐标原点到,距离的比值为。当直线的斜率为时,由图形的对称性可知,坐标原点到,距离的比值也为3。【2011,20】在平面直角坐标系中,曲线与坐标轴的交点都在圆上(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值【解析】(1)曲线与轴的交点为,与轴的交点为故可设的圆心为,则有,解得则圆的半径为,所以圆的方程为(2)设,其坐标满足方程组消去,得方程由已知可得,判别式,因此,从而, 由于,可得又,所以 由得,满足,故专心-专注-专业

    注意事项

    本文(2011年—2018年新课标全国卷1文科数学分类汇编—10.解析几何(共17页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开