欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    北师大版九年级上册数学复习分解(共16页).doc

    • 资源ID:15160773       资源大小:508.50KB        全文页数:16页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师大版九年级上册数学复习分解(共16页).doc

    精选优质文档-倾情为你奉上数学九年级上册知识点总结第一章 特殊的平行四边形复习知识点归纳矩形菱形正方形性质边对边平行且相等对边平行,四边相等对边平行,四边相等角四个角都是直角对角相等四个角都是直角对角线互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。·是矩形,且有一组邻边相等;·是菱形,且有一个角是直角。对称性既是轴对称图形,又是中心对称图形一矩形例1:若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为 例2:菱形具有而矩形不具有的性质是 ( )A 对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补二菱形例1  已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E求证:AFD=CBE 例2已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形例3、如图,在 ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F,求证:四边形AFCE是菱形.例4、已知如图,菱形ABCD中,E是BC上一点,AE 、BD交于M,若AB=AE,EAD=2BAE。求证:AM=BE。 例5如图,在菱形ABCD中,A=60°,=4,O为对角线BD的中点,过O点作OEAB,垂足为E求线段的长例6如图,四边形ABCD是菱形,DEAB交BA的延长线于E,DFBC,交BC的延长线于F。请你猜想DE与DF的大小有什么关系?并证明你的猜想。例7、如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:BDEBCF; (2)判断BEF的形状,并说明理由;(3)设BEF的面积为S,求S的取值范围.三正方形要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形. 例1 已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF例2 已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点求证:四边形PQMN是正方形实战演练:1.对角线互相垂直平分的四边形是( )A平行四边形、菱形B矩形、菱形C矩形、正方形D菱形、正方形2.顺次连接菱形各边中点所得的四边形一定是( )A.等腰梯形B.正方形C.平行四边形D.矩形BA1DC2112BADCBAC12D12BADC3.已知为矩形的对角线,则图中与一定不相等的是( )A B C D4.如右图,在中,点分别在边,上,且,下列四个判断中,不正确的是()A四边形是平行四边形B如果,那么四边形是矩形C如果平分,那么四边形是菱形D如果且,那么四边形是菱形5.如下左图,四边形为矩形纸片把纸片折叠,使点恰好落在边的中点处,折痕为若,则等于()ABCDEAB CD6.如上中图,矩形的周长为,两条对角线相交于点,过点作的垂线,分别交于点,连结,则的周长为( )A5cmB8cmC9cmD10cm7.如上右图:矩形纸片ABCD,AB=2,点E在BC上,且AE=EC若将纸片沿AE折叠,点B恰好落在AC上,则AC的长是8.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是 .BCDAP9.如下左图所示,菱形中,对角线相交于点,若再补充一个条件能使菱形成为正方形,则这个条件是 (只填一个条件即可)ADCBO10.如上右图,已知P是正方形ABCD对角线BD上一点,且BP = BC,则ACP度数是 11.如图,矩形中,是与的交点,过点的直线与的延长线分别交于(1)求证:;(2)当与满足什么关系时,以为顶点的四边形是菱形?证明你的结论FDOCBEA第二章 一元二次方程复习一、一元二次方程 (一)一元二次方程定义:含有一个未知数,并且未知数的项的最高次数是2,系数不为0的整式方程叫做一元二次方程。(二)一元二次方程的一般形式:,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。例 方程是一元二次方程,则.二、一元二次方程的解法 1、直接开平方法:直接开平方法适用于解形如的一元二次方程。当时,;当b<0时,方程没有实数根。例 第二象限内一点A(x1,x22),关于x轴的对称点为B,且AB=6,则x=_2、配方法 一般步骤:(1) 方程两边同时除以a,将二次项系数化为1.(2) 将所得方程的常数项移到方程的右边。(3) 所得方程的两边都加上一次项系数一半的平方(4) 配方,化成(5)开方,当时,;当b<0时,方程没有实数根。例 若方程有解,则的取值范围是()ABC D无法确定3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程的求根公式:例 已知x24x2=0,那么3x212x2012的值为 4、因式分解法一元二次方程的一边为0,另一边易于分解成两个一次因式的乘积时使用此方法。例 已知一个三角形的两边长是方程x2-8x+15=0的两根,则第三边y的取值范围是( ) Ay<8 B3<y<5 c2<y<8 D无法确定补充:一元二次方程根的判别式 根的判别式1、定义:一元二次方程中,叫做一元二次方程的根的判别式。2、性质:当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当0时,方程没有实数根。例 若关于x 的方程x2 2 (a 1 )x = (b+2)2有两个相等的实根,则a2013+b5的值为 .例 若关于x的方程x2 2x(k-x)+6=0无实根,则k可取的最小整数为( )(A) - 5 (B) - 4 (C) - 3(D)- 2补充:一元二次方程根与系数的关系(韦达定理)如果方程的两个实数根是,那么,。第三章 概率的进一步认识一、知识概括 1、频率(1)在频率分布表里,落在各小组内的数据的个数叫做频数;(2)每一小组的频数与数据总数的比值叫做这一小组的频率; 即:(3)在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。因此,各个小长方形的面积的和等于1。2、概率的求法:(1)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m个结果,那么事件A发生的概率为P(A)=(2)表格法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。(3)树状图法 通过画树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。(当一次试验要涉及三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。)例 在布袋中装有两个大小一样,质地相同的球,其中一个为红色,一个为白色。模拟“摸出一个球是白球”的机会,可以用下列哪种替代物进行实验( )(A) “抛掷一枚普通骰子出现1点朝上”的机会(B) “抛掷一枚啤酒瓶盖出现盖面朝上”的机会(C) “抛掷一枚质地均匀的硬币出现正面朝上”的机会(D) “抛掷一枚普通图钉出现针尖触地”的机会例 如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )(A) (B) (C) (D) 例 如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达H点的概率是( )(A) (B) (C) (D) 例 如图是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是( )(A) (B) (C) (D) 例 在图中的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指12345甲26374乙的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段不能构成三角形的概率是( )(A) (B) (C) (D)三、典型例题 例1. 袋中有红、黄、白色球各一个,它们除颜色外其余都相同,每次任取一个,又放回抽取两次。求下列事件的概率。 (1)全红(2)颜色全同(3)无白 解: 说明:颜色全同包括都是红色或都是黄色或都是白色;无白指没有白色球。 例2. 一个密码保险柜的密码由6个数字组成,每个数字都是由09这十个数字中的一个,王叔叔忘记了其中最后面的两个数字,那么他一次就能打开保险柜的概率是多少? 解:他前面的4个数字都已知道只有最后两个数字忘记了,而最后两个数字每个数字出现的可能结果都有10种情况,那么组成两个数字的可能结果就有100种,因此正好是密码上的最后两个数字的概率是。 例3. 袋中有红色、黄色、蓝色、白色球若干个,小刚又放入5个黑球后,小颖通过多次摸球实验后,发现摸到红球、黄球、蓝球、白球及黑球的频率依次为25,30,30,10,5,试估计袋中红色球、黄色球、蓝色球及白色球各有多少个? 解:小刚放入5个黑球后摸到的黑色球的频率为5,则可以由此估计出袋中共有球100×2525个,黄色球100×3030个,蓝色球100×3030个,白色球100×1010个。 例4. 甲、乙两人用如图所示的两个转盘做游戏,转动两个转盘各1次 (1)若两次数字之差的绝对值为0,1或2,则甲胜,否则乙胜。这个游戏对双方公平吗?为什么? (2)若两次数字和是2的倍数,则甲胜,而若和是3的倍数或5的倍数,则乙胜。这个游戏对双方公平吗?为什么? 解:(1)用列表的方法可看出所有可能的结果: 从上表中可以看出两个数字之差的绝对值,为0的有4种可能结果,1的有7种可能甲胜的可能性比乙大,所以不公平。 (2)通过列表可知: 出现的两个数字之和是2的倍数有15种,出现的两个数字之和是3的倍数有10种,5比乙小,所以不公平。 例5. 小明与同学一起想知道每6个人中有两个人生肖相同的概率,他们想设计一个模拟实验来估计6个人中恰有两个人生肖相同的概率,你能帮他们设计这个模拟方案吗? 分析:可以用摸球、扑克牌、转盘、计算器模拟随机整数等方法。注意“一次实验”的设计。 解:用12个完全相同的小球分别编上号码112,代表12个生肖,放入一个不透明的袋中摇匀后,从中随机抽取一球,记下号码后放回,再摇匀后取出一球记下号码连续取出6个球为一次实验,重复上述实验过程多次,统计每次实验中出现相同号码的次数除以总的实验次数,得到的实验频率可估计每6个人中有两个人生肖相同的概率。 第四章 图形相似与相似三角形知识点解读知识点1.相似图形的含义把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关例1放大镜中的正方形与原正方形具有怎样的关系呢?分析:要注意镜中的正方形与原正方形的形状没有改变解:是相似图形。因为它们的形状相同,大小不一定相同例2下列各组图形:两个平行四边形;两个圆;两个矩形;有一个内角80°的两个等腰三角形;两个正五边形;有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_(填序号)解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似答案:知识点2比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段解读:(1)四条线段a,b,c,d成比例,记作(或a:b=c:d),不能写成其他形式,即比例线段有顺序性(2)在比例式(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比例内项,d是第四比例项(3)如果比例内项是相同的线段,即或a:b=b:c,那么线段b叫做线段和的比例中项。(4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等例3已知线段a=2cm, b=6mm, 求分析:求即求与长度的比,与的单位不同,先统一单位,再求比例4已知a,b,c,d成比例,且a=6cm,b=3dm,d=dm,求c的长度分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,d统一单位后代入求c知识点3相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等解读:(1)正确理解相似多边形的定义,明确“对应”关系(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性例5若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少?分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比,即为,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边的长知识点4相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比注意:相似比是有顺序的,比如ABCA1B1C1,相似比为k,若A1B1C1ABC,则相似比为。若两个三角形的相似比为1,则这两个三角形全等,全等三角形是相似三角形的特殊情况。若两个三角形全等,则这两个三角形相似;若两个三角形相似,则这两个三角形不一定全等例6如图,已知ADEABC,DE=2,BC=4,则和的相似比是多少?点D,E分别是AB,AC的中点吗? 注意:解决此类问题应注意两方面:(1)相似比的顺序性,(2)图形的识别解:因为ADEABC,所以,因为,所以,所以D,E分别是AB,AC的中点知识点5相似三角的判定方法(1) 定义:对应角相等,对应边成比例的两个三角形相似;(2) 平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似(3) 如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(4) 如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(5) 如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似(6) 直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似经过归纳和总结,相似三角形有以下几种基本类型: 平行线型常见的有如下两种,DEBC,则ADEABC 相交线型常见的有如下四种情形,如图,已知1=B,则由公共角A得,ADEABC 如下左图,已知1=B,则由公共角A得,ADCACB如下右图,已知B=D,则由对顶角1=2得,ADEABC 旋转型已知BAD=CAE,B=D,则ADEABC,下图为常见的基本图形 母子型已知ACB=90°,ABCD,则CBDABCACD 解决相似三角形问题,关键是要善于从复杂的图形中分解出(构造出)上述基本图形例7如图,点D在ABC的边AB上,满足怎样的条件时,ACD与ABC相似?试分别加以列举 分析:此题属于探索性问题,由相似三角形的判别方法可知,ACD与ABC已有公共角A,要使此两个三角形相似,可根据相似三角形的判别方法寻找一个条件即可解:当满足以下三个条件之一时,ACDABC条件一:1=B;条件二:2=ACB;条件三:,即AC2=AD·AB知识点6相似三角形的性质(1) 对应角相等,对应边的比相等;(2) 对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3) 相似三角形周长之比等于相似比;面积之比等于相似比的平方例8如图,已知ADEABC,AD=8,BD=4,BC=15,EC=7(1) 求DE、AE的长;(2) 你还能发现哪些线段成比例 分析:此题重点考查由两个三角形相似,可得到对应边成例,即解:(1)ADEABC, ,AD=8,BD=4,BC=15,EC=7 设DE=x,则, 12x=8×15, x=10;设AE=a,则, a=14.(2) 例9已知ABCA1B1C1,=,ABC的周长为20cm,面积为40cm2求(1)A1B1C1的周长;(2)A1B1C1的面积分析:根据相似三角形周长之比等于相似比;面积之比等于相似比的平方求解易求出A1B1C1的周长为30cm; A1B1C1的面积90cm2五、视图与投影1、视图三视图包括:主视图、俯视图和左视图。在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。例 如图,一几何体的三视图如右:那么这个几何体是 . 主视图 左视图 俯视图 例 如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )2、投影(1)投影:物体在光线的照射下,在地面上或墙壁上留下它的影子,这就是投影现象。(2)平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。(3)中心投影:探照灯、手电筒、路灯和台灯的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影。(4)区分平行投影和中心投影:观察光源;观察影子。(5)从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。点在一个平面上的投影仍是一个点;线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状。例 小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子AEDCB( )A. 相交 B. 平行 C. 垂直 D. 无法确定例 小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED2米,DB4米,CD1.5米,则电线杆AB长 .3、视点、视线、盲区眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。例 当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了,这是因为( )A 汽车开的很快 B盲区减小 C盲区增大 D 无法确定第六章 反比例函数1、反比例函数的概念一般地,如果两个变量x,y之间的关系可以表示为(k是常数,k0)的形式,那么称y是x的反比例函数。(反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。)2、反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。3、反比例函数的性质反比例函数k的符号k>0k<0图象 y O x y O x性质x的取值范围是x0, y的取值范围是y0;当k>0时,函数图象的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。x的取值范围是x0, y的取值范围是y0;当k<0时,函数图象的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。例 在同一坐标系中,函数和的图像大致是 ( )A B C D例 反比例函数,当时,其图象的两个分支在第一、三象限内。例 反比例函数的对称轴有( )条(A)0 (B)1 (C)2 (D) 无数例 对于反比例函数(),下列说法不正确的是( )(A)它的图象分布在第一、三象限 (B)点(,)在它的图象上(C)它的图象是中心对称图形 (D)随的增大而增大例 已知反比例函数(k0)的图象上有两点A(),B(),且,则的值是()(A)正数(B)负数(C)非正数(D)不能确定4、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。5、反比例函数中反比例系数的几何意义过反比例函数图像上任一点P(x,y)作x轴、y轴的垂线PM,PN,垂足分别是M、N,则所得的矩形PMON的面积S=PMPN=。ABOxy例 如图,A为反比例函数图象上一点,AB垂直轴于B点,若SAOB3,则的值为( )A、6 B、3C、D、不能确定 专心-专注-专业

    注意事项

    本文(北师大版九年级上册数学复习分解(共16页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开