欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    圆锥曲线中的定点和定值问题的解题方法(共21页).doc

    • 资源ID:15170441       资源大小:985KB        全文页数:21页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    圆锥曲线中的定点和定值问题的解题方法(共21页).doc

    精选优质文档-倾情为你奉上寒假文科强化(四):圆锥曲线中的定点和定值问题的解答方法【基础知识】1、对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决.2、在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效.题型一 :定点问题法一:特殊探求,一般证明;法二:设该直线(曲线)上两点的坐标,利用点在直线(曲线)上,建立坐标满足的方程(组),求出相应的直线(曲线),然后再利用直线(曲线)过定点的知识加以解决。OAB例1 设点A和B是抛物线上原点以外的两个动点,且,求证直线过定点。解:取写出直线的方程;再取写出直线的方程;最后求出两条直线的交点,得交点为。设,直线的方程为, 由题意得两式相减得 ,即,直线的方程为,整理得 又,直线的方程为 把代入直线得方程恒成立,所以直线过定点解:由上得 又, 代入 得,整理得, 直线过定点【变式演练1】已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为()求椭圆的标准方程;()若直线与椭圆相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标题型二定值问题解题方法(1)通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效.(2)进行一般计算推理求出其结果。例2:过抛物线:(0)的焦点作直线交抛物线于两点,若线段与的长分别为,则的值必等于( )A B C D抛物线(0)的焦点,准线 :图1又由,消去得, 来源:Zxxk.Com例3是经过椭圆 右焦点的任一弦,若过椭圆中心的弦,求证:是定值解析:对于本题,,分别为中心弦和焦点弦,可将其倾斜角退到0°,此时有,,(定值)下面再证明一般性设平行弦、的倾斜角为,则斜率,的方程为代入椭圆方程,又即得 ,另一方面,直线方程为同理可得 由可知(定值)关于式也可直接由焦点弦长公式得到例4设上的两点,已知向量,,若m·n=0且椭圆的离心率短轴长为2,为坐标原点.   ()求椭圆的方程; ()若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;()试问:AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.【答案】   解:()由题意知 椭圆的方程为                        ()由题意,设AB的方程为由已知得:                                          () (1)当直线AB斜率不存在时,即,由m·n=0得                         又 在椭圆上,所以,所以S =所以三角形AOB的面积为定值                            (2).当直线AB斜率存在时:设AB的方程为y=kx+b,由 所以三角形的面积为定值.  【高考精选传真】来源:学科网ZXXK1(2012年江苏省16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中为椭圆的离心率(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P【解析】(1)由题设知,由点在椭圆上,得,。由点在椭圆上,得椭圆的方程为。(2)由(1)得,又, 设、的方程分别为,。 注意到, 直线的斜率为 (ii)证明:,即。 2.【2012高考真题上海理22】(4+6+6=16分)在平面直角坐标系中,已知双曲线:(1)过的左顶点引的一条渐进线的平行线,求该直线与另一条渐进线及轴围成的三角形的面积;(2)设斜率为1的直线交于、两点,若与圆相切,求证:;(3)设椭圆:,若、分别是、上的动点,且,求证:到直线的距离是定值. 由,得. 设P(x1, y1)、Q(x2, y2),则.(lb ylfx) 又2,所以 , 设O到直线MN的距离为d,因为, 所以,即d=. 综上,O到直线MN的距离是定值. 3、(2012高考真题福建理19)如图,椭圆的左焦点为,右焦点为,离心率。过的直线交椭圆于两点,且的周长为8。()求椭圆的方程。()设动直线与椭圆有且只有一个公共点,且与直线相交于点。试探究: 在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由。()设 则 的周长为 椭圆的方程为【反馈训练】1过抛物线y22px(p>0)上一定点M(x0,y0)(y00),作两条直线分别交抛物线于A(x1,y1)、B(x2,y2),当MA与MB的斜率存在且倾斜角互补时,则等于()A2 B2C4 D42设A(x1,y1),B(x2,y2)是抛物线y22px(p>0)上的两点,并且满足OAOB,则y1y2等于()A4p2 B3p2C2p2 Dp24、过点M(p,0)任作一条直线交抛物线y2=2px(p0)于P、Q两点,则+的值为 ( )A.         B.        C.       D.5、椭圆=1(ab0)上两点A、B与中心O的连线互相垂直,则的值为(    ) A.       B.      C.      D.6、已知F1、F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1PF2,e1和e2分别是上述椭圆和双曲线的离心率,则有 ( )A.+=4               B.+=2C.e12+e22=4                 D.e12+e22=27、已知定点在抛物线:(0)上,动点且求证:弦必过一定点OAB8、设为抛物线上位于轴两侧的两点.O为坐标原点.(1)若证明直线AB恒过一个定点; (2)若,证明直线AB恒过一个定点。【变式演练详细解析】【变式演练1详细解析】因为以为直径的圆过椭圆的右焦点,即,【变式演练2详细解析】   解:()由题意知 椭圆的方程为                        ()由题意,设AB的方程为得                         又 在椭圆上,所以,所以S =来源:学|科|网Z|X|X|K所以三角形AOB的面积为定值                            (2).当直线AB斜率存在时:设AB的方程为y=kx+b,                                 由                    所以三角形的面积为定值.  【反馈训练详细解析】代入得·y1y20,解得y1y24p2.3、【解析】本题可用特殊值法不妨设弦AB为椭圆的短轴M为椭圆的右顶点,则A(0,b),B(0,b),M(a,0)所以故选B4、【解析】不妨取PQx轴,则P(p,p),Q(p,-p),|MP|=p,|MQ|=p.来源:Zxxk.Com+=.5、【解析】假设A、B为椭圆的长轴和短轴的顶点,则=.排除选项A、B、C,选D.6、【解析】设椭圆长轴长为2a1,双曲线实轴长为2a2,焦距均为2c,|PF2|=a1+a2,|PF1|=a1-a2.PF1与PF2垂直,|PF1|2+|PF2|2=|F1F2|2.(a1+a2)2+(a1-a2)2=4c2,2a12+2a22=4c2.+=2.式可化为,即将代入得,直线方程化为:直线恒过点8、【解析】1、(1)解:即.所以过定点(1,0).(2)因为,得所以直线AB过定点(2P,0).来源:Z&xx&k.Com来源:学科网且有抛物线方程为所以过抛物线上A、B两点的切线方程分别是 所以为定值,其值为0.10、【解析】假设在x轴上存在点M(m,0),使·为常数设A(x1,y1),B(x2,y2)当直线AB与x轴不垂直时,直线AB的斜率存在,设直线AB的方程为yk(x1),将yk(x1)代入x23y25,消去y整理得(3k21)x26k2x3k250.则13、设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。解:(1)因为椭圆E: (a,b>0)过M(2,) ,N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即, w.w.w.k.s.5.u.c.o.m 则=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以, 当时因为所以,所以,所以当且仅当时取”=”. w.w.w.k.s.5.u.c.o.m 当时,. 当AB的斜率不存在时, 两个交点为或,所以此时,综上, |AB |的取值范围为即: 【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与专心-专注-专业

    注意事项

    本文(圆锥曲线中的定点和定值问题的解题方法(共21页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开