欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    带电粒子在复合场中的运动高考题例析.doc

    • 资源ID:15181748       资源大小:1.05MB        全文页数:31页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    带电粒子在复合场中的运动高考题例析.doc

    精选优质文档-倾情为你奉上带电粒子在复合场中的运动高考题例析1.带电粒子在复合场中运动的分析方法(1)弄清复合场的组成.如磁场、电场的复合,磁场、重力场的复合,磁场、电场、重力场三者的复合等.(2)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(3)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(4)对于粒子连续通过几个不同种类的场时,要分阶段进行处理.(5)画出粒子运动轨迹,灵活选择不同的运动规律.当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解.当带电粒子在复合场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.对于临界问题,注意挖掘隐含条件.2.复合场中粒子重力是否考虑的三种情况(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般应当考虑其重力.(2)在题目中有明确说明是否要考虑重力的,这种情况按题目要求处理比较正规,也比较简单.(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力.【例1】(16分)如图所示, 在水平地面上方有一范围足够大的互相正交的匀强电场和匀强磁场区域.磁场的磁感应强度为B,方向垂直纸面向里.一质量为m、带电荷量为q的带正电微粒在此区域内沿竖直平面(垂直于磁场方向的平面)做速度大小为v的匀速圆周运动,重力加速度为g.(1)求此区域内电场强度的大小和方向.(2)若某时刻微粒在场中运动到P点时,速度与水平方向的夹角为60°,且已知P点与水平地面间的距离等于其做圆周运动的半径.求该微粒运动到最高点时与水平地面间的距离.(3)当带电微粒运动至最高点时,将电场强度的大小变为原来的 (方向不变,且不计电场变化对原磁场的影响),且带电微粒能落至地面,求带电微粒落至地面时的速度大小.【详解】(1)由于带电微粒可以在电场、磁场和重力场共存的区域内沿竖直平面做匀速圆周运动,表明带电微粒所受的电场力和重力大小相等、方向相反,因此电场强度的方向竖直向上. (1分)设电场强度为E,则有mg=qE (2分)即 (1分)(2)设带电微粒做匀速圆周运动的轨道半径为R,根据牛顿第二定律和洛伦兹力公式有 (1分)解得 (1分)依题意可画出带电微粒做匀速圆周运动的轨迹如图所示,由几何关系可知,该微粒运动至最高点时与水平地面间的距离 (4分)(3)将电场强度的大小变为原来的则电场力F电=带电微粒运动过程中,洛伦兹力不做功,所以在它从最高点运动至地面的过程中,只有重力和电场力做功,设带电微粒落地时的速度大小为v1,根据动能定理有 (4分) 解得:二、带电粒子在复合场中运动的分类1.带电粒子在复合场中无约束情况下的运动(1)磁场力、重力并存若重力和洛伦兹力平衡,则带电体做匀速直线运动.若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因F洛不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)若电场力和洛伦兹力平衡,则带电体做匀速直线运动.若电场力和洛伦兹力不平衡,则带电体做复杂的曲线运动,因F洛不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存若三力平衡,一定做匀速直线运动.若重力与电场力平衡,一定做匀速圆周运动.若合力不为零且与速度方向不垂直,做复杂的曲线运动,因F洛不做功,可用能量守恒或动能定理求解问题.2.带电粒子在复合场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.3.带电粒子在复合场中运动的临界值问题由于带电粒子在复合场中受力情况复杂、运动情况多变,往往出现临界问题,这时应以题目中的“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.【例2】(14分)如图所示,足够长的光滑绝缘斜面与水平面的夹角为(sin=0.6),放在匀强电场和匀强磁场中,电场强度E=50 V/m,方向水平向左,磁场方向垂直纸面向外.一个电荷量为q=4×10-2C,质量m=0.40 kg的光滑小球,以初速度v0=20 m/s从斜面底端向上滑,然后又下滑,共经过3 s脱离斜面,求磁场的磁感应强度.(g取10 m/s2)【详解】小球沿斜面向上运动过程中受力分析如图所示,由牛顿第二定律,得qEcos+mgsin=ma1, (3分)故 (1分)代入数据得a1=10 m/s2, (1分)上行时间 (1分)小球沿斜面下滑过程中受力分析如图所示,小球在离开斜面前做匀加速直线运动,a2=10 m/s2 (1分)运动时间t2=1 s (1分)脱离斜面时的速度v=a2t2=10 m/s (1分)在垂直斜面方向上小球脱离斜面受力条件有: qvB+qEsin=mgcos, (3分)故 (2分) 【感悟高考真题】1.(2011·新课标全国卷·T25)如图,在区域I(0xd)和区域II(dx2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求(1)粒子a射入区域I时速度的大小;(2)当a离开区域II时,a、b两粒子的y坐标之差。【详解】(1)设粒子a在I内做匀速圆周运动的圆心为C(在y轴上),半径为Ra1,粒子速率为va,运动轨迹与两磁场区域边界的交点为P,如图,由洛伦兹力公式和牛顿第二定律有,qvaB=m 由几何关系有PCP= Ra1= 式中=30°,由上面三式可得va= (2)设粒子a在II内做圆周运动的圆心为Oa,半径为Ra2,射出点为Pa(图中未画出轨迹),POaPa=,由洛伦兹力公式和牛顿第二定律有,q va(2B)=m 由式得Ra2= C、P、Oa三点共线,且由式知Oa点必位于x=d 的平面上,由对称性知,Pa点与P的纵坐标相同,即yPa=Ra1cosh 式中,h是C点的纵坐标。设b在I中运动的轨道半径为Rb1,由洛仑兹力公式和牛顿第二定律有,q()B= ()2 设a到达Pa点时,b位于Pb点,转过的角度为,如果b没有飞出I,则= = 式中,t是a在区域II中运动的时间,而Ta2= Tb1= 由式得=30° 由式可见,b没有飞出I。Pb点的y坐标为yP2=Rb1(2+cos)+h 由式及题给条件得,a、b两粒子的y坐标差为yP2yPa=(2)d2.(2011·安徽高考·T23)如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经时间从p点射出。(1)求电场强度的大小和方向。(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。【答案】(1) (2) (3) 【详解】(1)设带电粒子质量为m,电荷量为q,初速度为v,电场强度为E,可判断出粒子受到的洛伦兹力沿x轴负方向,由于粒子的重力不计且粒子受力平衡,故粒子受到的电场力和洛伦兹力大小相等方向相反,电场强度沿沿x轴正方向, 得(2)仅有电场时,带电粒子在匀强电场中作类平抛运动在y方向作匀速直线运动,位移为 由式得,设在水平方向位移为x,因射出位置在半圆线边界上,于是,又因为粒子在水平方向上做匀速直线运动,则 得 (3)仅有磁场时入射速度,带电粒子在匀强磁场中作匀速圆周运动,设轨道半径为,由牛顿第二定律有 ,又有 ,由得带电粒子偏转情况如图由几何知识,,则带电粒子在磁场中运动时间3.(2011·北京高考·T23)利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用。如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝。离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂于磁场的方向射入磁场,运动到GA边,被相应的收集器收集,整个装置内部为真空。已知被加速度的两种正离子的质量分别是和,电荷量均为。加速电场的电势差为U,离子进入电场时的初速度可以忽略,不计重力,也不考虑离子间的相互作用。(1)求质量为的离子进入磁场时的速率;(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距s;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度。若狭缝过宽,可能使两束离子在GA边上的落点区域交叠,导致两种离子无法完全分离。 设磁感应强度大小可调,GA边长为定值L,狭缝宽度为d,狭缝右边缘在A处;离子可以从狭缝各处射入磁场,入射方向仍垂直于GA边且垂直于磁场。为保证上述两种离子能落在GA边上并被完全分离,求狭缝的最大宽度。【答案】【详解】由动能定理,所以在磁场中作圆周运动,利用得,求两种离子在GA边落点的间距质量为的粒子,在GA边上的落点都在其入射点左侧2R1处,由于狭缝的宽度为d,落点区域的宽度也为d,同理,质量为的粒子在GA边上落点区域宽度也是d。为保证两束粒子能完全分离,两个区域应无交叠,条件为利用式代入式,得R1最大值满足得求得最大值4.(2011·山东高考·T25)(18分)扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆。其简化模型如图、两处的条形匀强磁场区边界竖直,相距为L,磁场方向相反且垂直于纸面。一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器MN板处由静止释放,极板间电压为U,粒子经电场加速后平行于纸面射入区,射入时速度与水平方向夹角(1)当区宽度L1=L、磁感应强度大小B1=B0时,粒子从区右边界射出时速度与水平方向夹角也为,求B0及粒子在区运动的时间t0(2)若区宽度L2=L1=L磁感应强度大小B2=B1=B0,求粒子在区的最高点与区的最低点之间的高度差h(3)若L2=L1=L、B1=B0,为使粒子能返回区,求B2应满足的条件(4)若,且已保证了粒子能从区右边界射出。为使粒子从区右边界射出的方向与从区左边界射入的方向总相同,求B1、B2、L1、L2、之间应满足的关系式。【答案】(1)(2)(3)或(4)【详解】(1)如图1所思,设粒子射入磁场区的速度为,在磁场区中做圆周运动的半径为,由动能定理和牛顿第二定律得 由几何知识得 联立式,代入数据得 设粒子在磁场区中做圆周运动的周期为T,运动的时间为 联立式,代入数据得 (2)设粒子在磁场区做圆周运动的半径为,由牛顿第二定律得 由几何知识可得 联立式,代入数据得 (3)如图2所示,为使粒子能再次回到区,应满足 联立式,代入数据得 (12)(4)如图3(或图4)所示,设粒子射出磁场区时速度与水平方向的夹角为,由几何知识可得 (13) (14)联立式得 (15)联立(13)(14)(15)式得 (16)5.(2011·广东理综·T35)如图19(a)所示,在以O为圆心,内外半径分别为和的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,,一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力。(1)已知粒子从外圆上以速度射出,求粒子在A点的初速度的大小(2)若撤去电场,如图19(b),已知粒子从OA延长线与外圆的交点C以速度射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间(3)在图19(b)中,若粒子从A点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?【答案】(1),(2),;(3)【详解】(1)带电粒子在复合场中受到电场力和洛伦兹力的作用,因为洛伦兹力不做功,故只要有电场力做功,由动能定理得:.(2)做出粒子运动的轨迹如图所示,则,得粒子的运动半径为洛伦兹力提供向心力:,联立解得:在磁场中的运动时间为:(3)若粒子能够从AO延长线与外圆的交点射出,则有所有粒子均射出,此时粒子在A点的射入方向是垂直AC向下的,粒子轨迹的半径为,此时对应磁感应强度是最大的设为Bm,要使粒子能从外圆射出,由洛伦兹力提供向心力得:所以6.(2010·全国卷1)26(21分)如下图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0180°范围内。已知沿y轴正方向发射的粒子在时刻刚好从磁场边界上点离开磁场。求:粒子在磁场中做圆周运动的半径R及粒子的比荷qm;此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;从粒子发射到全部粒子离开磁场所用的时间。【答案】 速度与y轴的正方向的夹角范围是60°到120°从粒子发射到全部离开所用 时间 为【解析】 粒子沿y轴的正方向进入磁场,从P点经过做OP的垂直平分线与x轴的交点为圆心,根据直角三角形有解得,则粒子做圆周运动的的圆心角为120°,周期为粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得,化简得仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出。角度最小时从磁场右边界穿出圆心角120°,所经过圆弧的弦与中相等穿出点如图,根据弦与半径、x轴的夹角都是30°,所以此时速度与y轴的正方向的夹角是60°。角度最大时从磁场左边界穿出,半径与y轴的的夹角是60°,则此时速度与y轴的正方向的夹角是120°。所以速度与y轴的正方向的夹角范围是60°到120°RRR在磁场中运动时间最长的粒子的轨迹应该与磁场的右边界相切,在三角形中两个相等的腰为,而它的高是,半径与y轴的的夹角是30°,这种粒子的圆心角是240°。所用 时间 为。所以从粒子发射到全部离开所用 时间 为。7. (2010·全国卷2)26(21分)图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁场应强度大小为B0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为,求离子乙的质量。(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。解析:(1)在粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v,电场的场强为E0,根据平衡条件得 由化简得 粒子甲垂直边界EF进入磁场,又垂直边界EF穿出磁场,则轨迹圆心在EF上。粒子运动中经过EG,说明圆轨迹与EG相切,在如图的三角形中半径为R=acos30°tan15° tan15°= 联立化简得 在磁场中粒子所需向心力由洛伦磁力提供,根据牛顿第二定律得 联立化简得 (2)由于1点将EG边按1比3等分,根据三角形的性质说明此轨迹的弦与EG垂直,在如图的三角形中,有 同理 (10)(3)最轻离子的质量是甲的一半,根据半径公式离子的轨迹半径与离子质量呈正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF穿出磁场,甲最远离H的距离为,最轻离子最近离H的距离为,所以在离H的距离为到之间的EF边界上有离子穿出磁场。比甲质量大的离子都从EG穿出磁场,期中甲运动中经过EG上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG上穿出磁场的粒子都在这两点之间。8、 (2010·上海物理)13. 如图,长为的直导线拆成边长相等,夹角为的形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为,当在该导线中通以电流强度为的电流时,该形通电导线受到的安培力大小为(A)0 (B)0.5 (C) (D)答案:C解析:导线有效长度为2lsin30°=l,所以该V形通电导线收到的安培力大小为。选C。本题考查安培力大小的计算。难度:易。9、 (2010·福建卷)21、(19分)如图所示,两条平行的光滑金属导轨固定在倾角为的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场。现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止。当a棒运动到磁场的上边界PQ处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨。当a棒再次滑回到磁场边界PQ处时,又恰能沿导轨匀速向下运动。已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计。求(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I,与定值电阻R中的电流强度IR之比;(2)a棒质量ma;(3)a棒在磁场中沿导轨向上运动时所受的拉力F。解析:(1)a棒沿导轨向上运动时,a棒、b棒及电阻R中的电流分别为Ia、Ib、IR,有解得:(2)由于a棒在PQ上方滑动过程中机械能守恒,因而a棒在磁场中向上滑动的速度大小v1与在磁场中向下滑动的速度大小v2相等,即v1=v2=v设磁场的磁感应强度为B,导体棒长为L乙,a棒在磁场中运动时产生的感应电动势为E=Blv当a棒沿斜面向上运动时向下匀速运动时,a棒中的电流为Ia、则 由以上各式联立解得:(3)由题可知导体棒a沿斜面向上运动时,所受拉力10、 (2010·山东卷)25(18分)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里。一质量为、带电量+q、重力不计的带电粒子,以初速度垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求粒子第一次经过电场子的过程中电场力所做的功。粒子第n次经过电场时电场强度的大小。粒子第n次经过电场子所用的时间。假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标明坐标刻度值)。解析:(1)根据,因为,所以,所以,(2)=,所以。(3),所以。(4)11、 (2010·北京卷)23.(18分)利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。如图1,将一金属或半导体薄片垂直至于磁场B中,在薄片的两个侧面、间通以电流时,另外两侧、间产生电势差,这一现象称霍尔效应。其原因是薄片中的移动电荷受洛伦兹力的作用相一侧偏转和积累,于是、间建立起电场,同时产生霍尔电势差。当电荷所受的电场力与洛伦兹力处处相等时,和达到稳定值,的大小与和以及霍尔元件厚度之间满足关系式,其中比例系数称为霍尔系数,仅与材料性质有关。(1)设半导体薄片的宽度(、间距)为,请写出和的关系式;若半导体材料是电子导电的,请判断图中、哪端的电势高;(2)已知半导体薄片内单位体积中导电的电子数为,电子的电荷量为,请导出霍尔系数的表达式。(通过横截面积的电流,其中是导电电子定向移动的平均速率);(3)图2是霍尔测速仪的示意图,将非磁性圆盘固定在转轴上,圆盘的周边等距离地嵌装着个永磁体,相邻永磁体的极性相反。霍尔元件置于被测圆盘的边缘附近。当圆盘匀速转动时,霍尔元件输出的电压脉冲信号图像如图所示。.若在时间内,霍尔元件输出的脉冲数目为,请导出圆盘转速的表达式。.利用霍尔测速仪可以测量汽车行驶的里程。除除此之外,请你展开“智慧的翅膀”,提出另一个实例或设想。解析:(1)由 得 当电场力与洛伦兹力相等时 得 将 、代入,得 (2) a.由于在时间t内,霍尔元件输出的脉冲数目为P,则 P=mNt圆盘转速为 N=b.提出的实例或设想 12、 (2010·天津卷)12.(20分)质谱分析技术已广泛应用于各前沿科学领域。汤姆孙发现电子的质谱装置示意如图,M、N为两块水平放置的平行金属极板,板长为L,板右端到屏的距离为D,且D远大于L,OO为垂直于屏的中心轴线,不计离子重力和离子在板间偏离OO的距离。以屏中心O为原点建立xOy直角坐标系,其中x轴沿水平方向,y轴沿竖直方向。(1)设一个质量为m0、电荷量为q0的正离子以速度v0沿OO的方向从O点射入,板间不加电场和磁场时,离子打在屏上O点。若在两极板间加一沿+y方向场强为E的匀强电场,求离子射到屏上时偏离O点的距离y0;(2)假设你利用该装置探究未知离子,试依照以下实验结果计算未知离子的质量数。上述装置中,保留原电场,再在板间加沿-y方向的匀强磁场。现有电荷量相同的两种正离子组成的离子流,仍从O点沿OO方向射入,屏上出现两条亮线。在两线上取y坐标相同的两个光点,对应的x坐标分别为3.24mm和3.00mm,其中x坐标大的光点是碳12离子击中屏产生的,另一光点是未知离子产生的。尽管入射离子速度不完全相同,但入射速度都很大,且在板间运动时OO方向的分速度总是远大于x方向和y方向的分速度。解析:(1)离子在电场中受到的电场力离子获得的加速度离子在板间运动的时间到达极板右边缘时,离子在方向的分速度离子从板右端到达屏上所需时间离子射到屏上时偏离点的距离由上述各式,得(2)设离子电荷量为,质量为,入射时速度为,磁场的磁感应强度为,磁场对离子的洛伦兹力已知离子的入射速度都很大,因而离子在磁场中运动时间甚短,所经过的圆弧与圆周相比甚小,且在板间运动时,方向的分速度总是远大于在方向和方向的分速度,洛伦兹力变化甚微,故可作恒力处理,洛伦兹力产生的加速度是离子在方向的加速度,离子在方向的运动可视为初速度为零的匀加速直线运动,到达极板右端时,离子在方向的分速度离子飞出极板到达屏时,在方向上偏离点的距离当离子的初速度为任意值时,离子到达屏上时的位置在方向上偏离点的距离为,考虑到式,得由、两式得其中上式表明,是与离子进入板间初速度无关的定值,对两种离子均相同,由题设条件知,坐标3.24mm的光点对应的是碳12离子,其质量为,坐标3.00mm的光点对应的是未知离子,设其质量为,由式代入数据可得故该未知离子的质量数为14。13、 (2010·四川卷)24.(19分)如图所示,电源电动势。内阻,电阻。间距的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度的匀强磁场。闭合开关,板间电场视为匀强电场,将一带正电的小球以初速度沿两板间中线水平射入板间。设滑动变阻器接入电路的阻值为Rx,忽略空气对小球的作用,取。(1)当Rx=29时,电阻消耗的电功率是多大?(2)若小球进入板间做匀速圆周运动并与板相碰,碰时速度与初速度的夹角为,则Rx是多少?【答案】0.6W;54。【解析】闭合电路的外电阻为 根据闭合电路的欧姆定律 A R2两端的电压为 V R2消耗的功率为 W 小球进入电磁场做匀速圆周运动,说明重力和电场力等大反向,洛仑兹力提供向心力,根据牛顿第二定律 连立化简得 小球做匀速圆周运动的初末速的夹角等于圆心角为60°,根据几何关系得 连立带入数据 V 干路电流为 A 14、 (2010·安徽卷)23.(16分)如图1所示,宽度为的竖直狭长区域内(边界为),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为,表示电场方向竖直向上。时,一带正电、质量为的微粒从左边界上的点以水平速度射入该区域,沿直线运动到点后,做一次完整的圆周运动,再沿直线运动到右边界上的点。为线段的中点,重力加速度为g。上述、为已知量。 (1)求微粒所带电荷量和磁感应强度的大小;(2)求电场变化的周期;(3)改变宽度,使微粒仍能按上述运动过程通过相应宽度的区域,求的最小值。解析: (1)微粒作直线运动,则 微粒作圆周运动,则 联立得 (2)设粒子从N1运动到Q的时间为t1,作圆周运动的周期为t2,则 联立得 电场变化的周期 (3)若粒子能完成题述的运动过程,要求 d2R (10)联立得 (11)设N1Q段直线运动的最短时间为tmin,由(10)(11)得 因t2不变,T的最小值【考点模拟演练】1.(2011·南昌模拟)如图为一“滤速器”装置的示意图.a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间.为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能沿水平直线OO运动,由O射出.不计重力作用.可能达到上述目的的办法是( )A.使a板电势高于b板,磁场方向垂直纸面向里B.使a板电势低于b板,磁场方向垂直纸面向里C.使a板电势高于b板,磁场方向垂直纸面向外D.使a板电势低于b板,磁场方向垂直纸面向外【答案】选A、D.【详解】电子能沿水平直线运动,则电子所受的电场力与洛伦兹力大小相等方向相反,当a板电势高于b板时,根据左手定则判断,磁场方向应垂直纸面向里,所以A正确C错误;当a板电势低于b板时,根据左手定则判断,磁场方向应垂直纸面向外,所以D正确B错误.2.(2011·黄冈模拟)如图所示,空间存在正交的匀强电场和匀强磁场,匀强电场方向竖直向上,匀强磁场的方向垂直纸面向里.有一内壁光滑、底部有带正电小球的试管.在水平拉力F作用下,试管向右匀速运动,带电小球能从试管口处飞出.已知小球质量为m,带电量为q,场强大小为关于带电小球及其在离开试管前的运动,下列说法中正确的是( )A.洛伦兹力对小球不做功B.洛伦兹力对小球做正功C.小球的运动轨迹是一条抛物线D.维持试管匀速运动的拉力F应逐渐增大【答案】选A、C、D.【详解】洛伦兹力方向始终与小球运动速度方向垂直,不做功,故A正确B错误;小球在竖直方向受向上的电场力与向下的重力,二者大小相等,试管向右匀速运动,小球的水平速度保持不变,则竖直向上的洛伦兹力分量大小不变,小球竖直向上做加速运动,即小球做类平抛运动,故C正确;小球竖直分速度增大,受水平向左的洛伦兹力分量增大,为维持试管匀速运动拉力F应逐渐增大,D正确.3.在如图所示的匀强电场和匀强磁场共存的区域内(不计重力),电子可能沿水平方向向右做直线运动的是( ) 【答案】选B、C.【详解】若电子水平向右运动,在A图中电场力水平向左,洛伦兹力竖直向下,故不可能;在B图中,电场力水平向左,洛伦兹力为零,故电子可能水平向右做匀减速直线运动;在C图中电场力竖直向上,洛伦兹力竖直向下,当二者大小相等时,电子向右做匀速直线运动;在D图中电场力竖直向上,洛伦兹力竖直向上,故电子不可能做水平向右的直线运动,因此只有选项B、C正确.4.如图所示,空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场.一带电粒子在电场力和洛伦兹力共同作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C为运动的最低点,不计重力,则( )A.该粒子必带正电荷B.A、B两点位于同一高度C.粒子到达C点时的速度最大D.粒子到达B点后,将沿原曲线返回A点【答案】选A、B、C.【详解】在不计重力情况下,粒子从A点由静止开始向下运动,说明粒子受向下的电场力,带正电,选项A正确.整个过程中只有电场力做功,而A、B两点粒子速度都为零,所以A、B在同一等势面上,选项B正确.运动到C点时粒子在电场力方向上发生的位移最大,电场力做功最多,粒子速度最大,选项C正确.粒子从B点向下运动时受向右的洛伦兹力,将向右偏,故选项D错.5.地

    注意事项

    本文(带电粒子在复合场中的运动高考题例析.doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开