欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    二次函数综合题及答案(共33页).doc

    • 资源ID:15186739       资源大小:757.50KB        全文页数:33页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    二次函数综合题及答案(共33页).doc

    精选优质文档-倾情为你奉上二次函数综合题一解答题(共14小题)1(2013重庆)如图,对称轴为直线x=1的抛物线y=ax2+bx+c(a0)与x轴相交于A、B两点,其中点A的坐标为(3,0)(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点若点P在抛物线上,且SPOC=4SBOC求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值2(2013重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标3(2013昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a0)上(1)求抛物线的解析式(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,求出所有满足PODNOB的点P的坐标(点P、O、D分别与点N、O、B对应)4(2013张家界)如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:CEQCDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由5(2013枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,3)点,点P是直线BC下方的抛物线上一动点(1)求这个二次函数的表达式(2)连接PO、PC,并把POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积6(2013营口)如图,抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D(1)求该抛物线的解析式与顶点D的坐标(2)试判断BCD的形状,并说明理由(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由7(2013雅安)如图,已知抛物线y=ax2+bx+c经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由8(2013新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3)(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求ACE的最大面积及E点的坐标9(2013湘西州)如图,已知抛物线y=x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(2,0)(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断AOC与COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由10(2013湘潭)如图,在坐标系xOy中,ABC是等腰直角三角形,BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx2的图象过C点(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l当l移动到何处时,恰好将ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由11(2013遂宁)如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,)直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DEy轴于点E探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PNAD于点N,设PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值12(2013曲靖)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=x2+bx+c点D为线段AB上一动点,过点D作CDx轴于点C,交抛物线于点E(1)求抛物线的解析式(2)当DE=4时,求四边形CAEB的面积(3)连接BE,是否存在点D,使得DBE和DAC相似?若存在,求此点D坐标;若不存在,说明理由13(2013黔西南州)如图,已知抛物线经过A(2,0),B(3,3)及原点O,顶点为C(1)求抛物线的函数解析式(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标(3)P是抛物线上第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与BOC相似?若存在,求出点P的坐标;若不存在,请说明理由14(2013攀枝花)如图,抛物线y=ax2+bx+c经过点A(3,0),B(1.0),C(0,3)(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DEx轴于点E,在y轴上是否存在点M,使得ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由2013年10月陈永的初中数学组卷参考答案与试题解析一解答题(共14小题)1(2013重庆)如图,对称轴为直线x=1的抛物线y=ax2+bx+c(a0)与x轴相交于A、B两点,其中点A的坐标为(3,0)(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点若点P在抛物线上,且SPOC=4SBOC求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值考点:二次函数综合题专题:压轴题分析:(1)由抛物线y=ax2+bx+c的对称轴为直线x=1,交x轴于A、B两点,其中A点的坐标为(3,0),根据二次函数的对称性,即可求得B点的坐标;(2)a=1时,先由对称轴为直线x=1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x3,得到C点坐标,然后设P点坐标为(x,x2+2x3),根据SPOC=4SBOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;先运用待定系数法求出直线AC的解析式为y=x3,再设Q点坐标为(x,x3),则D点坐标为(x,x2+2x3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值解答:解:(1)对称轴为直线x=1的抛物线y=ax2+bx+c(a0)与x轴相交于A、B两点,A、B两点关于直线x=1对称,点A的坐标为(3,0),点B的坐标为(1,0);(2)a=1时,抛物线y=x2+bx+c的对称轴为直线x=1,=1,解得b=2将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=3则二次函数的解析式为y=x2+2x3,抛物线与y轴的交点C的坐标为(0,3),OC=3设P点坐标为(x,x2+2x3),SPOC=4SBOC,×3×|x|=4××3×1,|x|=4,x=±4当x=4时,x2+2x3=16+83=21;当x=4时,x2+2x3=1683=5所以点P的坐标为(4,21)或(4,5);设直线AC的解析式为y=kx+t,将A(3,0),C(0,3)代入,得,解得,即直线AC的解析式为y=x3设Q点坐标为(x,x3)(3x0),则D点坐标为(x,x2+2x3),QD=(x3)(x2+2x3)=x23x=(x+)2+,当x=时,QD有最大值点评:此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题此题难度适中,解题的关键是运用方程思想与数形结合思想2(2013重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标考点:二次函数综合题专题:压轴题分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出ABN的面积S2=5,则S1=6S2=30再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形证明EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(1,0),运用待定系数法求出直线PQ的解析式为y=x1,然后解方程组,即可求出点P的坐标解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x26x+5;(2)设M(x,x26x+5)(1x5),则N(x,x+5),MN=(x+5)(x26x+5)=x2+5x=(x)2+,当x=时,MN有最大值;(3)MN取得最大值时,x=2.5,x+5=2.5+5=2.5,即N(2.5,2.5)解方程x26x+5=0,得x=1或5,A(1,0),B(5,0),AB=51=4,ABN的面积S2=×4×2.5=5,平行四边形CBPQ的面积S1=6S2=30设平行四边形CBPQ的边BC上的高为BD,则BCBDBC=5,BCBD=30,BD=3过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形BCBD,OBC=45°,EBD=45°,EBD为等腰直角三角形,BE=BD=6,B(5,0),E(1,0),设直线PQ的解析式为y=x+t,将E(1,0)代入,得1+t=0,解得t=1直线PQ的解析式为y=x1解方程组,得,点P的坐标为P1(2,3)(与点D重合)或P2(3,4)点评:本题是二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,平行四边形的判定和性质等知识点,综合性较强,考查学生运用方程组、数形结合的思想方法(2)中弄清线段MN长度的函数意义是关键,(3)中确定P与Q的位置是关键3(2013昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a0)上(1)求抛物线的解析式(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,求出所有满足PODNOB的点P的坐标(点P、O、D分别与点N、O、B对应)考点:二次函数综合题专题:压轴题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线AB的解析式,进而由P1ODNOB,得出P1ODN1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标解答:解:(1)A(3,0)、B(4,4)、O(0,0)在抛物线y=ax2+bx+c (a0)上,解得:,故抛物线的解析式为:y=x23x;(2)设直线OB的解析式为y=k1x( k10),由点B(4,4)得4=4 k1,解得k1=1直线OB的解析式为y=x,AOB=45°B(4,4),点B向下平移m个单位长度的点B的坐标为(4,0),故m=4平移m个单位长度的直线为y=x4解方程组 解得:,点D的坐标为(2,2)(3)直线OB的解析式y=x,且A(3,0)点A关于直线OB的对称点A的坐标为(0,3)设直线AB的解析式为y=k2x+3,此直线过点B(4,4)4k2+3=4,解得 k2=直线AB的解析式为y=x+3NBO=ABO,点N在直线AB上,设点N(n,n+3),又点N在抛物线y=x23x上,n+3=n23n解得 n1=,n2=4(不合题意,舍去),点N的坐标为(,)如图,将NOB沿x轴翻折,得到N1OB1,则 N1 (,),B1(4,4)O、D、B1都在直线y=x上P1ODNOB,P1ODN1OB1,P1为O N1的中点=,点P1的坐标为(,)将P1OD沿直线y=x翻折,可得另一个满足条件的点到x轴距离等于P1到y轴距离,点到y轴距离等于P1到x轴距离,此点坐标为:(,)综上所述,点P的坐标为(,)和(,)点评:此题主要考查了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键4(2013张家界)如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:CEQCDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由考点:二次函数综合题专题:压轴题分析:(1)利用待定系数法求出直线解析式;(2)利用待定系数法求出抛物线的解析式;(3)关键是证明CEQ与CDO均为等腰直角三角形;(4)如答图所示,作点C关于直线QE的对称点C,作点C关于x轴的对称点C,连接CC,交OD于点F,交QE于点P,则PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,PCF的周长等于线段CC的长度利用轴对称的性质、两点之间线段最短可以证明此时PCF的周长最小如答图所示,利用勾股定理求出线段CC的长度,即PCF周长的最小值解答:解:(1)C(0,1),OD=OC,D点坐标为(1,0)设直线CD的解析式为y=kx+b(k0),将C(0,1),D(1,0)代入得:,解得:b=1,k=1,直线CD的解析式为:y=x+1(2)设抛物线的解析式为y=a(x2)2+3,将C(0,1)代入得:1=a×(2)2+3,解得a=y=(x2)2+3=x2+2x+1(3)证明:由题意可知,ECD=45°,OC=OD,且OCOD,OCD为等腰直角三角形,ODC=45°,ECD=ODC,CEx轴,则点C、E关于对称轴(直线x=2)对称,点E的坐标为(4,1)如答图所示,设对称轴(直线x=2)与CE交于点F,则F(2,1),ME=CM=QM=2,QME与QMC均为等腰直角三角形,QEC=QCE=45°又OCD为等腰直角三角形,ODC=OCD=45°,QEC=QCE=ODC=OCD=45°,CEQCDO(4)存在如答图所示,作点C关于直线QE的对称点C,作点C关于x轴的对称点C,连接CC,交OD于点F,交QE于点P,则PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,PCF的周长等于线段CC的长度(证明如下:不妨在线段OD上取异于点F的任一点F,在线段QE上取异于点P的任一点P,连接FC,FP,PC由轴对称的性质可知,PCF的周长=FC+FP+PC;而FC+FP+PC是点C,C之间的折线段,由两点之间线段最短可知:FC+FP+PCCC,即PCF的周长大于PCE的周长)如答图所示,连接CE,C,C关于直线QE对称,QCE为等腰直角三角形,QCE为等腰直角三角形,CEC为等腰直角三角形,点C的坐标为(4,5);C,C关于x轴对称,点C的坐标为(1,0)过点C作CNy轴于点N,则NC=4,NC=4+1+1=6,在RtCNC中,由勾股定理得:CC=综上所述,在P点和F点移动过程中,PCF的周长存在最小值,最小值为点评:本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形、等腰直角三角形、勾股定理、轴对称的性质等重要知识点,涉及考点较多,有一点的难度本题难点在于第(4)问,如何充分利用轴对称的性质确定PCF周长最小时的几何图形,是解答本题的关键5(2013枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,3)点,点P是直线BC下方的抛物线上一动点(1)求这个二次函数的表达式(2)连接PO、PC,并把POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积考点:二次函数综合题专题:压轴题分析:(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POPC为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于ABC的面积为定值,当四边形ABPC的面积最大时,BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标解答:解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x22x3(3分)(2)存在点P,使四边形POPC为菱形;设P点坐标为(x,x22x3),PP交CO于E若四边形POPC是菱形,则有PC=PO;连接PP,则PECO于E,OE=EC=y=;(6分)x22x3=解得x1=,x2=(不合题意,舍去)P点的坐标为(,)(8分)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x22x3),易得,直线BC的解析式为y=x3则Q点的坐标为(x,x3);S四边形ABPC=SABC+SBPQ+SCPQ=ABOC+QPBF+QPOF=(10分)当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为(12分)点评:此题考查了二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解6(2013营口)如图,抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D(1)求该抛物线的解析式与顶点D的坐标(2)试判断BCD的形状,并说明理由(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由考点:二次函数综合题专题:压轴题分析:(1)利用待定系数法即可求得函数的解析式;(2)利用勾股定理求得BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;(3)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解解答:解:(1)设抛物线的解析式为y=ax2+bx+c由抛物线与y轴交于点C(0,3),可知c=3即抛物线的解析式为y=ax2+bx+3把点A(1,0)、点B(3,0)代入,得解得a=1,b=2抛物线的解析式为y=x22x+3y=x22x+3=(x+1)2+4顶点D的坐标为(1,4);(2)BCD是直角三角形理由如下:解法一:过点D分别作x轴、y轴的垂线,垂足分别为E、F在RtBOC中,OB=3,OC=3,BC2=OB2+OC2=18在RtCDF中,DF=1,CF=OFOC=43=1,CD2=DF2+CF2=2在RtBDE中,DE=4,BE=OBOE=31=2,BD2=DE2+BE2=20BC2+CD2=BD2BCD为直角三角形解法二:过点D作DFy轴于点F在RtBOC中,OB=3,OC=3OB=OCOCB=45°在RtCDF中,DF=1,CF=OFOC=43=1DF=CFDCF=45°BCD=180°DCFOCB=90°BCD为直角三角形(3)BCD的三边,=,又=,故当P是原点O时,ACPDBC;当AC是直角边时,若AC与CD是对应边,设P的坐标是(0,a),则PC=3a,=,即=,解得:a=9,则P的坐标是(0,9),三角形ACP不是直角三角形,则ACPCBD不成立;当AC是直角边,若AC与BC是对应边时,设P的坐标是(0,b),则PC=3b,则=,即=,解得:b=,故P是(0,)时,则ACPCBD一定成立;当P在y轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(d,0)则AB=1d,当AC与CD是对应边时,=,即=,解得:d=13,此时,两个三角形不相似;当P在y轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(e,0)则AP=1e,当AC与DC是对应边时,=,即=,解得:e=9,符合条件总之,符合条件的点P的坐标为:点评:本题是相似三角形的判定与性质,待定系数法,勾股定理以及其逆定理的综合应用7(2013雅安)如图,已知抛物线y=ax2+bx+c经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由考点:二次函数综合题专题:综合题;压轴题分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,m22m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可解答:解:(1)由题意可知:解得:抛物线的解析式为:y=x22x+3;(2)PBC的周长为:PB+PC+BCBC是定值,当PB+PC最小时,PBC的周长最小,点A、点B关于对称轴I对称,连接AC交l于点P,即点P为所求的点AP=BPPBC的周长最小是:PB+PC+BC=AC+BCA(3,0),B(1,0),C(0,3),AC=3,BC=;故PBC周长的最小值为3+(3)抛物线y=x22x+3顶点D的坐标为(1,4)A(3,0)直线AD的解析式为y=2x+6点E的横坐标为m,E(m,2m+6),F(m,m22m+3)EF=m22m+3(2m+6)=m24m3S=SDEF+SAEF=EFGH+EFAG=EFAH=(m24m3)×2=m24m3;S=m24m3=(m+2)2+1;当m=2时,S最大,最大值为1此时点E的坐标为(2,2)点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础8(2013新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3)(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求ACE的最大面积及E点的坐标考点:二次函数综合题专题:代数几何综合题;压轴题分析:(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式=0时,ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解解答:解:(1)抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),解得,所以,抛物线的解析式为y=x24x+3;(2)点A、B关于对称轴对称,点D为AC与对称轴的交点时BCD的周长最小,设直线AC的解析式为y=kx+b(k0),则,解得,所以,直线AC的解析式为y=x1,y=x24x+3=(x2)21,抛物线的对称轴为直线x=2,当x=2时,y=21=1,抛物线对称轴上存在点D(2,1),使BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x25x+3m=0,=(5)24×1×(3m)=0,即m=时,点E到AC的距离最大,ACE的面积最大,此时x=,y=,点E的坐标为(,),设过点E的直线与x轴交点为F,则F(,0),AF=1=,直线AC的解析式为y=x1,CAB=45°,点F到AC的距离为×=,又AC=3,ACE的最大面积=×3×=,此时E点坐标为(,)点评:本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题9(2013湘西州)如图,已知抛物线y=x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(2,0)(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断AOC与COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由考点:二次函数综合题专题:压轴题分析:(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=求出对称轴方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标再利用待定系数法求出直线BD的解析式;(3)根据,AOC=BOC=90°,可以判定AOCCOB;(4)本问为存在型问题若ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解解答:解:(1)抛物线y=x2+bx+4的图象经过点A(2,0),×(2)2+b×(2)+4=0,解得:b=,抛物线解析式为 y=x2+x+4,又y=x2+x+4=(x3)2+,对称轴方程为:x=3(2)在y=x2+x+4中,令x=0,得y=4,C(0,4);令y=0,即x2+x+4=0,整理得x26x16=0,解得:x=8或x=2,A(2,0),B(8,0)设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,得:,解得k=,b=4,直线BC的解析式为:y=x+4(3)可判定AOCCOB成立理由如下:在AOC与COB中,OA=2,OC=4,OB=8,又AOC=BOC=90°,AOCCOB(4)抛物线的对称轴方程为:x=3,可设点Q(3,t),则可求得:AC=,AQ=,CQ=i)当AQ=CQ时,有=,25+t2=t28t+16+9,解得t=0,Q1(3,0);ii)当AC=AQ时,有=,t2=5,此方程无实数根,此时ACQ不能构成等腰三角形;iii)当AC=CQ时,有=,整理得:t28t+5=0,解得:t=4±,点Q坐标为:Q2(3,4+),Q3(3,4)综上所述,存在点Q,使ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4)点评:本题考查了二次函数与一次函数的图象与性质、待定系数法、相似三角形的判定、勾股定理、等腰三角形的判定等知识点难点在于第(4)问,符合条件的等腰三角形ACQ可能有多种情形,需要分类讨论10(2013湘潭)如图,在坐标系xOy中,ABC是等腰直角三角形,BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx2的图象过C点(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l当l移动到何处时,恰好将ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由考点:二次函数综合题专题:压轴题分析:如解答图所示:(1)首先构造全等三角形AOBCDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;(2)首先求出直线BC与AC的解析式,设直线

    注意事项

    本文(二次函数综合题及答案(共33页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开