欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    n阶行列式的定义教学课件.ppt

    • 资源ID:15364190       资源大小:5.65MB        全文页数:16页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    n阶行列式的定义教学课件.ppt

    行列式的定义行列式的定义1、概念的引入、概念的引入三阶行列式三阶行列式333231232221131211aaaaaaaaaD 322113312312332211aaaaaaaaa 332112322311312213aaaaaaaaa 说明说明(1)三阶行列式共有)三阶行列式共有 项,即项,即 项项6!3(2)每项都是位于不同行不同列的三个元素的)每项都是位于不同行不同列的三个元素的乘积乘积(3)每项的正负号都取决于位于不同行不同列)每项的正负号都取决于位于不同行不同列 的三个元素的下标排列的三个元素的下标排列例如例如322113aaa列标排列的逆序数为列标排列的逆序数为 , 211312 t322311aaa列标排列的逆序数为列标排列的逆序数为 , 101132 t偶排列偶排列奇排列奇排列正号正号 ,负号负号 .)1(321321333231232221131211 ppptaaaaaaaaaaaa2、n阶行列式的定义阶行列式的定义nnnnnnnppptaaaaaaaaaDaaannnn212222111211212.)1(21 记记作作的的代代数数和和个个元元素素的的乘乘积积取取自自不不同同行行不不同同列列的的阶阶行行列列式式等等于于所所有有个个数数组组成成的的由由定义定义).det(ija简记作简记作的的元元素素称称为为行行列列式式数数)det(ijijaa为为这这个个排排列列的的逆逆序序数数的的一一个个排排列列,为为自自然然数数其其中中tnpppn2121 nnnnppppppppptnnnnnnaaaaaaaaaaaaD212121212122221112111 说明说明1、行列式是一种特定的算式,它是根据求解方、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而程个数和未知量个数相同的一次方程组的需要而定义的定义的;2、 阶行列式是阶行列式是 项的代数和项的代数和;n!n3、 阶行列式的每项都是位于不同行、不同阶行列式的每项都是位于不同行、不同列列 个元素的乘积个元素的乘积;nn4、 一阶行列式一阶行列式 不要与绝对值记号相混淆不要与绝对值记号相混淆;aa 5、 的符号为的符号为nnpppaaa2121 .1t 例例1 1计算对角行列式计算对角行列式0004003002001000分析分析展开式中项的一般形式是展开式中项的一般形式是43214321ppppaaaa41 p若若, 011 pa从而这个项为零,从而这个项为零,所以所以 只能等于只能等于 , 1p4同理可得同理可得1, 2, 3432 ppp解解0004003002001000 432114321 t.24 即行列式中不为零的项为即行列式中不为零的项为.aaaa41322314例例2 2 计算上计算上三角行列式三角行列式nnnnaaaaaa00022211211分析分析展开式中项的一般形式是展开式中项的一般形式是.2121nnpppaaa,npn , 11 npn, 1, 2, 3123 ppnpn所以不为零的项只有所以不为零的项只有.2211nnaaannnnaaaaaa00022211211 nnntaaa2211121 .2211nnaaa 解解例例3?8000650012404321 D443322118000650012404321aaaaD .1608541 同理可得同理可得下三角行列式下三角行列式nnnnnaaaaaaa32122211100000.2211nnaaa n 21 .12121nnn ;21n n 21例例4 4 证明证明对角行列式对角行列式n 21 11,212111nnnnntaaa .12121nnn 证明证明第一式是显然的第一式是显然的,下面证第二式下面证第二式.若记若记,1, iniia 则依行列式定义则依行列式定义11,21nnnaaa 证毕证毕例例5 5设设nnnnnnaaaaaaaaaD2122221112111 nnnnnnnnnnabababaabababaaD221122222111112112 证明证明.21DD 证证由行列式定义有由行列式定义有 nnnnppppppppptnnnnnnaaaaaaaaaaaaD2121212121222211121111 nnnnnnnnnnabababaabababaaD221122222111112112 nnnnpppnnppppppppptbaaa 2121212121211由于由于,2121npppn 所以所以 .12211212121DaaaDnnnnpppppppppt nnnnpppnnppppppppptbaaaD 21212121212121 nnnnppppppppptaaa212121211 故故1 、行列式是一种特定的算式,它是根据求解、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需方程个数和未知量个数相同的一次方程组的需要而定义的要而定义的.2、 阶行列式共有阶行列式共有 项,每项都是位于不同项,每项都是位于不同行、不同列行、不同列 的的 个元素的乘积个元素的乘积,正负号由下标排正负号由下标排列的逆序数决定列的逆序数决定.nn!n3、小结、小结

    注意事项

    本文(n阶行列式的定义教学课件.ppt)为本站会员(春哥&#****71;)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开