概率论与数理统计公式总结已整理可直接打印.docx
精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结第一章对离散型随机变量PAB- P特殊的,当A、B互斥时,PAB对连续型随机变量条件概率公式F xP Xxxf t dt可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结P A | BP ABP B分布函数与密度函数的重要关系:'F xf x可编辑资料 - - - 欢迎下载精品名师归纳总结概率的乘法公式F xP Xxxf t dt可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结P ABP B P A | B P AP B | A二元随机变量及其边缘分布可编辑资料 - - - 欢迎下载精品名师归纳总结全概率公式:从缘由运算结果分布规律的描述方法可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结P AnP Bk P A | Bk 联合密度函数f x, y可编辑资料 - - - 欢迎下载精品名师归纳总结k 1联合分布函数F x, y可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结公式:从结果找缘由0 f Fx, xy,y 0 1可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结P Bk| AP Bin P A |Bi F x, yP Xx,Yyf x, ydxdy1可编辑资料 - - - 欢迎下载精品名师归纳总结PBk P A |k 1Bk 联合密度与边缘密度可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结其次章二项分布(分布) f X xf x, ydy可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结PXkCk pk1pnk,k0,1,.,nfY yf x, ydx可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结n泊松分布 离散型随机变量的独立性可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结kP Xke, k0,1,.P Xi ,Yj P Xi PYj可编辑资料 - - - 欢迎下载精品名师归纳总结k.概率密度函数连续型随机变量的独立性可编辑资料 - - - 欢迎下载精品名师归纳总结f x dx1f x, y第三章数学期望f X xfY y可编辑资料 - - - 欢迎下载精品名师归纳总结怎样运算概率PaXbP aXbbf xdxa离散型随机变量,数学期望定义连续型随机变量,数学期望定义EXkE X xkPkxf x dx可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结匀称分布 Ea ,其中 a 为常数EX ,其中 a、 b 为常数可编辑资料 - - - 欢迎下载精品名师归纳总结f x1abaxbEXY, X 、Y 为任意随机变量可编辑资料 - - - 欢迎下载精品名师归纳总结指数分布 随机变量gX 的数学期望E g X g xk pkk可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结f x1 e x /x0常用公式可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结分布函数F xP XxP Xk xk1 / 4EXxi pijij可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 1 页,共 4 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结E X xf x, ydxdy独立与相关独立必定不相关 相关必定不独立 不相关不肯定独立第四章可编辑资料 - - - 欢迎下载精品名师归纳总结EXYxi yj pijij正态分布X N x,2 2可编辑资料 - - - 欢迎下载精品名师归纳总结E XY E X E Y f x1e2 22可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结E XY xyf x, ydxdyE X ,D X 2可编辑资料 - - - 欢迎下载精品名师归纳总结当X与Y独立时 ,E XYE X E Y 标准正态分布的概率运算标准正态分布的概率运算公式a1a 可编辑资料 - - - 欢迎下载精品名师归纳总结方差定义式P ZaPZaa可编辑资料 - - - 欢迎下载精品名师归纳总结D X 2xE X f xdxPZaPaZP Za1bbaa可编辑资料 - - - 欢迎下载精品名师归纳总结常用运算式D X E X 2 E X 2PaZaaa2a1可编辑资料 - - - 欢迎下载精品名师归纳总结常用公式一般正态分布的概率运算可编辑资料 - - - 欢迎下载精品名师归纳总结D XY D X D Y 2 E XE X YE Y X N ,2 ZX N 0,1可编辑资料 - - - 欢迎下载精品名师归纳总结当 X 、Y 相互独立时:可编辑资料 - - - 欢迎下载精品名师归纳总结D XY D X D Y 一般正态分布的概率运算公式可编辑资料 - - - 欢迎下载精品名师归纳总结方差的性质Da=0 ,其中 a 为常数D2DX ,其中 a、 b 为常数当 X 、Y 相互独立时,DXYP XP XaP XaP Xa aa1 a可编辑资料 - - - 欢迎下载精品名师归纳总结协方差与相关系数PaXbb a可编辑资料 - - - 欢迎下载精品名师归纳总结EXE X YE YE XY E X E Y 第五章可编辑资料 - - - 欢迎下载精品名师归纳总结Cov X ,Y E XY E X E Y 卡方分布n可编辑资料 - - - 欢迎下载精品名师归纳总结CovX,YXYDXDY如X N 0,1,就i2X i12 n可编辑资料 - - - 欢迎下载精品名师归纳总结协方差的性质Cov X , X E X 2 E X 2D X 2如Y N ,1n就2Yii 122n 可编辑资料 - - - 欢迎下载精品名师归纳总结CovaX ,bYabCov X ,Yt 分布如X N 0,1,Y 2 n ,就X t n可编辑资料 - - - 欢迎下载精品名师归纳总结Cov XY, Z Cov X , Z Cov Y , Z Y / n可编辑资料 - - - 欢迎下载精品名师归纳总结2 / 4可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 2 页,共 4 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结如U 2n1,V 2 n2 ,就U / n1 F n1, n2资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结F 分布xt / 2 nV1s/ n2小样本、正态总体、标准差未知可编辑资料 - - - 欢迎下载精品名师归纳总结正态总体条件下nt/ 2 n1 自由度为 n1的t分布的分位点可编辑资料 - - - 欢迎下载精品名师归纳总结2X N ,nX N 0,1/n样 本 均 值 的分布:可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结n1 S222 n1Xs/n t n1样本方差可编辑资料 - - - 欢迎下载精品名师归纳总结的分布: n1 S2 n1 S2S2样本方差可编辑资料 - - - 欢迎下载精品名师归纳总结S212 / S2 F n1,n12,2/ 21/ 22 卡方分布的分位点可编辑资料 - - - 欢迎下载精品名师归纳总结/ 2221122两个正态总体的方差之比两个正态总体均值差的置信区间大样本或正态小样本且方差已知正态总体方差的区间估量可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结x1x22212z / 2n1n2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结第六章两个正态总体方差比的置信区间可编辑资料 - - - 欢迎下载精品名师归纳总结nLf xi ;Li 1np xi ;i 1点估量:参数的估 计 值为 一个常数S12F/ 2 n1/ S2,21, n21S1 / F / 2 n1S2221, n21可编辑资料 - - - 欢迎下载精品名师归纳总结矩估量最大似然估量似然函数第七章假设检验的步骤依据详细问题提出原假设H0 和备择假设H1可编辑资料 - - - 欢迎下载精品名师归纳总结xz/ 2nx 样本均值依据假设挑选检验统计量,并运算检验统计值看检验统计值是否落在拒绝域,如落在拒绝域就拒绝原假设,否就就不拒绝原假设。不行防止的两类错误可编辑资料 - - - 欢迎下载精品名师归纳总结 标准差 通常未知,可用样本标准差s代替第 1 类 弃真 错误:原假设为真,但拒绝了原假设可编辑资料 - - - 欢迎下载精品名师归纳总结nz / 2 样本容量 大样本要求 n 正态分布的分位点50第 2 类 取伪 错误:原假设为假,但接受了原假设单个正态总体的显著性检验单正态总体均值的检验可编辑资料 - - - 欢迎下载精品名师归纳总结均值的区间估量 大样本结果大样本情形 Z 检验可编辑资料 - - - 欢迎下载精品名师归纳总结pz / 2p1p n正态总体小样本、方差已知 Z 检验正态总体小样本、方差未知 t 检验单正态总体方差的检验可编辑资料 - - - 欢迎下载精品名师归纳总结p 样本比例n 样本容量大样本要求n50正态总体、均值未知 卡方检验单正态总体均值的显著性检验可编辑资料 - - - 欢迎下载精品名师归纳总结z / 2 正态分布的分位点统计假设的形式可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结小样本、正态总体、标准差已知1H 0 :0H 1 :0双边检验可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结xz / 2n2H 0 :0H 1 :0左边检验可编辑资料 - - - 欢迎下载精品名师归纳总结3 / 4可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 3 页,共 4 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结3H 0 :0H 1 :0右边检验可编辑资料 - - - 欢迎下载精品名师归纳总结单正态总体均值的Z 检验可编辑资料 - - - 欢迎下载精品名师归纳总结ZX0/n(大样本情形未知时用S代替)可编辑资料 - - - 欢迎下载精品名师归纳总结拒绝域的代数表示可编辑资料 - - - 欢迎下载精品名师归纳总结双边检验左边检验右边检验ZZ / 2ZZZZ可编辑资料 - - - 欢迎下载精品名师归纳总结比例 特殊的均值的Z 检验可编辑资料 - - - 欢迎下载精品名师归纳总结Zpp0 1p0p0 /np0 p 总体比例样本比例可编辑资料 - - - 欢迎下载精品名师归纳总结单正态总体均值的t 检验可编辑资料 - - - 欢迎下载精品名师归纳总结tXS /2n0n1) S220单正态总体方差的卡方检验可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结拒绝域双边检验或222/ 221/ 2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结左边检验右边检验221/ 222/ 2可编辑资料 - - - 欢迎下载精品名师归纳总结4 / 4可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 4 页,共 4 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载