欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第四节 多元复合函数求导法则.ppt

    • 资源ID:1602251       资源大小:955.50KB        全文页数:26页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第四节 多元复合函数求导法则.ppt

    第四节 多元复合函数求导法则,一、多元复合函数求导的链式法则,二、多元复合函数的全微分,一元复合函数的求导法则 (链式法则),处也可导,且有,复习,一、链式法则,定理,且其导数可用下列公式计算,一元复合函数,求导法则,证,例1 设 而,其中 可导,求,解,1.上定理的结论可推广到,以上公式中的导数 称为全导数.,推广,中间变量多于两个的情况:,的两个偏导数存在,且可用下列公式计算:,则复合函数,在对应点,2. 有两个中间变量多元函数的情况,即,复合结构如图示,这个公式的特征:,函数,有两个自变量 x 和 y,故法则中包含,两个公式;,由于在复合过程中有两个中间变量 u 和 v,故法则中每一个公式都是两项之和,这两项分别含有,每一项的构成与一元复合函数的链导法则类似,,即“函数对中间变量的导数乘以中间变量对自变量的导数”,多元复合函数的求导法则简言之即:,“分线相加,连线相乘”,解,在对应点,的两个偏导数存在,且可用下列公式计算,推广3 有三个中间变量的情形,设,即,其中,两者的区别,区别类似,4.中间变量即有一元函数,也有多元函数的情形:,解,下列两个例题有助于,混合偏导数,在计算时注意合并同类项!,设,掌握这方面问题的求导技巧。,常用导数符号,例4,解,例5,求,解,f 具有二阶连续偏导数,解,令,记,于是,全微分形式不变性的实质: 无论z是自变量x,y的函数或中间变量u,v 的函数,它的全微分形式是一样的.,二、全微分形式不变性,例7 设 而,求,解,比较,例8. 设,解法一: 利用公式有,例8. 设,解法二: 利用微分形式的不变性有,1、链式法则(连线相乘,分线相加),2、全微分形式不变性,(特别注意特殊情况:函数的复合结构的层次),小结,思考题,设,,而,试问,与,是否相同?为什么?,等式左端的z是作为一个自变量x的函数,,写出来为,不相同.,

    注意事项

    本文(第四节 多元复合函数求导法则.ppt)为本站会员(创****公)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开