欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    奥数最大公约数与最小公倍数例题、练习及答案(共8页).doc

    • 资源ID:16280007       资源大小:376KB        全文页数:8页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    奥数最大公约数与最小公倍数例题、练习及答案(共8页).doc

    精选优质文档-倾情为你奉上最大公约数与最小公倍数(一)教学目标:1通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。2通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。3培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。教学过程:一、基本概念知识1.公约数和最大公约数 如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。自然数的最大公约数通常用符号()表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。(8,12)=4,(6,9,15)=3。2.公倍数和最小公倍数如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。例如:12的倍数有:12,24,36,48,60,72,84, 18的倍数有:18,36,54,72,90,自然数的最小公倍数通常用符号表示,例如12和18的公倍数有:36,72,.其中36是12和18的最小公倍数,记作12,18=36。8,12=24,6,9,15=90。3.互质数 如果两个数的最大公约数是1,那么这两个数叫做互质数。 常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。用短除法求若干个数的最大公约数与最小公倍数的区别:求个数的最大公约数:(1) 必须每次都用个数的公约数去除;(2) 一直除到个数的商互质(但不一定两两互质);(3) 个数的最大公约数即为短除式中所有除数的乘积。求个数的最小公倍数:(1) 必须先用(如果有)个数的公约数去除,除到个数没有除去1以外的公约数后,在用个数的公约数去除,除到个数没有除1以外的公约数后,再用个数的公约数去除,如此继续下去,为保证这一条,每次所用的除数均可选质数;(2) 只要有两个数(被除数)能被同一数整除,就要继续除,一定要除到个数的商两两互质为止;(3) 个数的最小公倍数即为短除式中,所有除数和最后两两互质的商的乘积。例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?分析与解: 因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶 叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是 144,180,240的最大公约数。是144,180,240的最大公约数。 所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少?分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。498-450=48,450-414=36,498-414=84。所求数是(48,36,84)=12。 例3 现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?分析与解: 只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数。只能从唯一的条件“它们的和是1111”入手分析。三个数的和是1111,它们 的公约数一定是1111的约数。因为1111=101×11,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数 都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909。所以所求数是101。例4 在一个30×24的方格纸上画一条对角线(见下页上图),这条对角线除两个端点外,共经过多少个格点(横线与竖线的交叉点)?分析与解:(30,24)=6,说明如果将方格纸横、竖都分成6份,即分成6×6个相同的矩形,那么每个矩形是由(30÷6)×(24÷6)=5×4(个)小方格组成。在6×6的简化图中,对角线也是它所经过的每一个矩形的对角线,所以经过5个格点(见左下图)。在对角线所经过的每一个矩形的5×4个小方格中,对角线不经过任何格点(见右下图)。所以,对角线共经过格点(30,24)-1=5(个)。例5 甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒。三人同时从起点出发,最少需多长时间才能再次在起点相会?分析与解:甲、乙、丙走一圈分别需60秒、75秒和90秒,因为要在起点相会,即三人都要走整圈数,所以需要的时间应是60,75,90的公倍数。所求时间为60,75,90=900(秒)=15(分)。 例6 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?分析与解:爷爷和小明的年龄随着时间的推移都在变化,但他们的年龄差是保持不变的。爷爷的年龄现在是小明的7倍,说明他们的年龄差是6的倍数;同理,他们的年龄差也是5,4,3,2,1的倍数。由此推知,他们的年龄差是6,5,4,3,2的公倍数。6,5,4,3,2=60,爷爷和小明的年龄差是60的整数倍。考虑到年龄的实际情况,爷爷与小明的年龄差应是60岁。所以现在小明的年龄=60÷(7-1)=10(岁),爷爷的年龄=10×7=70(岁)。二、随堂练习 最大公约数与最小公倍数(二)摘要:这一讲主要讲最大公约数与最小公倍数的关系,并对最大公约数与最小公倍数的概念加以推广。在求18与12的最大公约数与最小公倍数时,由短除法可知,(18,12)=2×3=6,18,12=2×3×3×2=36。如果把18与12的最大公约数与最小公倍数相乘,那么(18,12)×18,12=(2×3)×(2×3×3×2)=(2×3×3)×(2×3×2)=18×12。也就是说,18与12的最大公约数与最小公倍数的乘积,等于18与12的乘积。当把18,12换成其它自然数时,依然有类似的结论。从而得出一个重要结论:两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。即,(a,b)×a,b=a×b。例1 两个自然数的最大公约数是6,最小公倍数是72。已知其中一个自然数是18,求另一个自然数。解:由上面的结论,另一个自然数是(6×72)÷18=24。例2 两个自然数的最大公约数是7,最小公倍数是210。这两个自然数的和是77,求这两个自然数。分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公约数是1,最小公倍数是30。这两个自然数的和是11,求这两个自然数。”改变以后的两个数的乘积是1×30=30,和是11。30=1×30=2×15=3×10=5×6,由上式知,两个因数的和是11的只有5×6,且5与6互质。因此改变后的两个数是5和6,故原来的两个自然数是7×5=35和7×6=42。例3 已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。分析与解:因为12,15都是a的约数,所以a应当是12与15的公倍数,即是12,15=60的倍数。再由a,b,c=120知, a只能是60或120。a,c=15,说明c没有质因数2,又因为a,b,c=120=23×3×5,所以c=15。因为a是c的倍数,所以求a,b的问题可以简化为:“a是60或120,(a,b)=12,a,b=120,求a,b。”当a=60时,b=(a,b)×a,b÷a=12×120÷60=24;当a=120时,b=(a,b)×a,b÷a=12×120÷120=12。所以a,b,c为60,24,15或120,12,15。要将它们全部分别装入小瓶中,每个小瓶装入液体的重量相同。问:每瓶最多装多少千克?分析与解:如果三种溶液的重量都是整数,那么每瓶装的重量就是三 种溶液重量的最大公约数。现在的问题是三种溶液的重量不是整数。要解决这个问题,可以将重量分别乘以某个数,将分数化为整数,求出数值后,再除以这个数。 为此,先求几个分母的最小公倍数,6,4,9=36,三种溶液的重量都乘以36后,变为150,135和80,(150,135,80)=5。上式说明,若三种溶液分别重150,135,80千克,则每瓶最多装5千克。可实际重量是150,135,80的1/36,所以每瓶最多装在例4中,出现了与整数的最大公约数类似的分数问题。为此,我们将最大公约数的概念推广到分数中。如果若干个分数(含整数)都是某个分数的整数倍,那么称这个分数是这若干个分数的公约数。在所有公约数中最大的一个公约数,称为这若干个分数的最大公约数。由例4的解答,得到求一组分数的最大公约数的方法:(1)先将各个分数化为假分数;(2)求出各个分数的分母的最小公倍数a;(3)求出各个分数的分子的最大公约数b; (4)即为所求。例5 求,的最大公约数。类似地,我们也可以将最小公倍数的概念推广到分数中。如果某个分数(或整数)同时是若干个分数(含整数)的整数倍,那么称这个分数是这若干个分数的公倍数。在所有公倍数中最小的一个公倍数,称为这若干个分数的最小公倍数。求一组分数的最小公倍数的方法:(1)先将各个分数化为假分数;(2)求出各个分数的分子的最小公倍数a;(3)求出各个分数的分母的最大公约数b;一个陷井。它们之中谁先掉进陷井?它掉进陷井时另一个跳了多远?同理,黄鼠狼掉进陷井时与起点的距离为所以黄鼠狼掉进陷井时跳了31 1/2÷6 3/10=5(次)。黄鼠狼先掉进陷井,它掉进陷井时,狐狸跳了专题1.将72和120的乘积写成它们的最大公约数和最最小公倍数的乘积的形式。2.两个自然数的最大公约数是12,最小公倍数是72。满足条件的自然数有哪几组?3.求下列各组分数的最大公约数:4.求下列各组分数的最小公倍数:  部分别装入小瓶中,每个小瓶装入液体的重量相同。问:最少要装多少瓶?于同一处只有一次,求圆形绿地的周长。随堂练习解答专题练习解答1.72×120=(7,120)×72,120=24×360。2.12,72与24,36两组。提示:72÷12=6=1×6=2×3,所以有两组:12×1=12,12×6=72; 12×2=24,12×3=36。5.等于。6.151瓶。7.120米。专心-专注-专业

    注意事项

    本文(奥数最大公约数与最小公倍数例题、练习及答案(共8页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开