计算N阶行列式的若干方法(共7页).doc
精选优质文档-倾情为你奉上网上搜集的计算行列式方法总结, 还算可以.计算n阶行列式的若干方法举例闵 兰摘 要:线性代数是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。关键词:n阶行列式 计算方法n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(按照某一列或某一行展开完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。1利用行列式定义直接计算例1 计算行列式解 Dn中不为零的项用一般形式表示为.该项列标排列的逆序数t(n1 n21n)等于,故 2利用行列式的性质计算例2 一个n阶行列式的元素满足则称Dn为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由知,即故行列式Dn可表示为由行列式的性质 当n为奇数时,得Dn =Dn,因而得Dn = 0.3化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。例3 计算n阶行列式 解 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,n列都加到第1列上,行列式不变,得4降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。例4 计算n阶行列式解 将Dn按第1行展开.5递推公式法递推公式法:对n阶行列式Dn找出Dn与Dn1或Dn与Dn1, Dn2之间的一种关系称为逆推公式(其中Dn, Dn1, Dn2等结构相同),再由递推公式求出Dn的方法称为递推公式法。例5 证明 证明 将Dn按第1列展开得 由此得递推公式:,利用此递推公式可得6利用范德蒙行列式例6 计算行列式解 把第1行的1倍加到第2行,把新的第2行的1倍加到第3行,以此类推直到把新的第n1行的1倍加到第n行,便得范德蒙行列式7加边法(升阶法)加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法。例7 计算n阶行列式 解 (箭形行列式) 8数学归纳法例8 计算n阶行列式解 用数学归纳法. 当n = 2时 假设n = k时,有 则当n = k+1时,把Dk+1按第一列展开,得由此,对任意的正整数n,有9拆开法把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以利计算。例9 计算行列式 解 上面介绍了计算n阶行列式的常见方法,计算行列式时,我们应当针对具体问题,把握行列式的特点,灵活选用方法。学习中多练习,多总结,才能更好地掌握行列式的计算。专心-专注-专业