2009届高三物理第二轮复习全套教案:气体实验定律(共13页).doc
-
资源ID:16306622
资源大小:104KB
全文页数:13页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2009届高三物理第二轮复习全套教案:气体实验定律(共13页).doc
精选优质文档-倾情为你奉上气体实验定律 教学目标1使学生明确理想气体的状态应由三个参量来决定,其中一个发生变化,至少还要有一个随之变化,所以控制变量的方法是物理学研究问题的重要方法之一2要求学生通过讨论、分析,总结出决定气体压强的因素,重点掌握压强的计算方法,使学生能够灵活运用力学知识来解决热学问题,使学生的知识得到迁移,为更好的解决力热综合题打下良好的基础3了解气体实验定律的实验条件、过程,学会研究物理问题的重要方法控制变量(单因素)法,明确气体实验定律表达式中各个字母的含义,引导学生抓住三个实验定律的共性,使复习能够事半功倍教学重点、难点分析1一定质量的某种理想气体的状态参量p、V、T确定后,气体的状态便确定了,在这里主要是气体压强的分析和计算是重点问题,在气体实验定律及运用气态方程的解题过程中,多数的难点问题也是压强的确定所以要求学生结合本专题的例题和同步练习,分析总结出一般性的解题方法和思路,使学生明确:压强的分析和计算,其实质仍是力学问题,还是需要运用隔离法,进行受力分析,利用力学规律(如平衡)列方程求解2三个气体实验定律从实验思想、内容到解题的方法、步骤上均有很多相似之处,复习时不要全面铺开,没有重点应以玻-马定律为重点内容,通过典型例题的分析,使学生学会抓共性,掌握一般的解题思路及方法,提高他们的科学素养教学过程设计教师活动一、气体的状态参量一定质量m的某种(摩尔质量M一定)理想气体可以用力学参量压强(p)、几何参量体积(V)和热学参量温度(T)来描述它所处的状态,当p、V、T一定时,气体的状态是确定的,当气体状态发生变化时,至少有两个参量要发生变化1压强(p)我们学过计算固体压强的公式p=F/S,计算液体由于自重产生的压强用p=gh,那么(1)对密闭在容器中的一定质量的气体的压强能否用上述公式计算呢?(2)密闭气体的压强是如何产生的呢?和什么因素有关?(3)密闭气体的压强如何计算呢?通过下面的几个例题来分析总结规律学生活动回答问题:(1)不能(2)是由于大量的气体分子频繁的碰撞器壁而形成的,和单位时间内、单位面积上的分子的碰撞次数有关,次数越多,产生的压强越大,而碰撞次数多,需单位体积内的分子数多,所以和单位体积内的分子数有关;还和碰撞的强弱有关,气体的温度越高,分子热运动越剧烈,对器壁的撞击越强例1在一端封闭粗细均匀的竖直放置的U形管内,有密度为的液体封闭着两段气柱A、B,大气压强为p0,各部分尺寸如图2-1-1所示,求A、B气体的压强学生讨论例题1让学生在黑板上列出不同的解法,典型解法如下:解法1:取液柱h1为研究对象设管的横截面积为S,h1受到向下的重力gSh1,A气体向下的压力pAS,大气向上的压力p0S,因为h1静止,所以pAS+gSh1=p0SpA=p0-gh1再取液柱h2为研究对象,由帕斯卡定律,h2上端受到A气体通过液体传递过来的向下的压力pAS,B气体向上的压力pBS,液柱自身重力gSh2,由于液柱静止,则pAS+gSh2=pBSpB=p0-gh1+gh2解法2:求pB时,由连通器的知识可知,同种液体在同一水平面上的压强处处相等,取同一水平面CD,则pA=pBS-gh2pB=p0-gh1+gh2在教师的引导下同学们总结:(1)气体自重产生的压强很小,一般忽略不计;(2)对密闭气体,帕斯卡定律仍适用;(3)当整个系统处于静止或匀速运动中时,气体的压强可以用力的平衡的方法求解,也可以运用连通器的原理,找等压面的方法求解例2如图2-1-2所示,一圆形气缸静置于水平地面上,气缸质量为M,活塞质量为m,活塞面积为S,大气压强是p0现将活塞缓慢上提,求气缸刚离开地面时,气缸内气体的压强(不计摩擦)此题涉及到活塞、气缸、密闭气体,以谁为研究对象呢?活塞缓慢移动的含义是什么?气缸刚离开地面是什么意思?对例题2学生讨论大致有两种观点:1以活塞为研究对象,活塞受向上的外力F、自身的重力mg、大气向下的压力p0S、封闭气体向上的压力pS,因为活塞缓慢移动,所以可以认为活塞的每个态均为平衡态,则F+pS=mg+p0S(1)F、p均是未知数,还需另立方程再以整体为研究对象,受向上的外力F、自身的重力(M+m)g、地面的支持力N系统是否受大气的压力呢?讨论结果:受,但是因为整个系统上下左右均受到大气的作用,所以分析受力时可不考虑系统静止,所以F+N=(M+m)g当气缸刚离开地面时,N=0,F=(M+m)g (2)将(2)代入(1)得p=p0-Mg/S2以气缸为研究对象,气缸受自身向下的重力Mg、封闭气体向上的压力pS、地面的支持力N、大气对气缸底部向上的压力p0S(学生对气缸上面是否受大气压力产生疑问经过讨论学生认识到气缸上方和它作用的是封闭气体,大气是作用在活塞上的)气缸静止,则Mg+pS=N+p0S当气缸刚离开地面时,N=0,得p=p0-Mg/S例3如图2-1-3所示,粗细均匀开口向上的直玻璃管内有一段长为h、密度为的水银柱,封闭了一段气体,当整个装置处于向下加速(加速度为a)的电梯中时,气体的压强是多少?若电梯向上加速呢?通过上面的三个例题,请同学们归纳总结计算气体压强的一般思路和方法学生解答例题3:以水银柱为研究对象,受重力gSh、大气向下的压力p0S、气体向上的压力pS,因为系统向下加速,由牛顿第二定律,gSh+p0S-pS=Shap=p0+(g-a)h讨论:若a=g,即系统做自由落体运动时(完全失重),p=p0同理,向下加速时,p=p0+(g+a)h学生归纳一般解题思路:1确定研究对象:活塞、气缸、液柱等2进行正确的受力分析3根据规律列方程,例如平衡条件、牛顿定律等4解方程并对结果进行必要的讨论2体积(V):气体分子所能充满的空间,若被装入容器则气体的体积=容器的容积3温度(T):温标:一般有摄氏温标和热力学温标,它们的关系是什么?T=t+273,-273=OK,T=t二、气体的实验定律提问:(1)气体的三个实验定律成立的条件是什么?(2)主要的实验思想是什么?很好,我们要会用文字、公式、图线三种方式表述出气体实验定律,更要注意定律成立的条件(1)一定质量的气体,压强不太大,温度不太高时(2)控制变量的方法对一定质量的某种气体,其状态由p、V、T三个参量来决定,如果控制T不变,研究p-V间的关系,即得到玻-马定律;如果控制V不变,研究p-T间的关系,即得到查理定律;如果控制p不变,研究V-T间的关系,即得到盖·吕萨克定律1等温过程玻-马定律(1)内容:(2)表达式: p1V1=p2V2(3)图像玻-马定律的内容是:一定质量的某种气体,在温度不变时,压强和体积的乘积是恒量讨论:上面的p-V图中,A、B表示一定质量的某种气体的两条等温线,则TA TB(填、=、),试说明理由TA TB说明原因的过程中,学生讨论后渐趋明朗有学生回答:从分子动理论的角度来说,气体的压强是大量气体分子频繁碰撞器壁的结果,单位体积内的分子数越多、分子运动的平均速率越大,压强就越大在p-V图像的两条等温线上,取体积相同的两点C、D,因为是一定质量的气体,所以单位体积内的分子数相同;又从图像上可知,pCPD,所以TDTC,则TBTA小结:一定质量的某种气体的p-V图像上的等温线越向右上方,温度越高,即pV的乘积越大例41m长的粗细均匀的直玻璃管一端封闭,把它开口向下竖直插入水中,管的一半露在水面外,大气压为76cmHg,求水进入管中的高度引导学生讨论:(1)此过程可视为等温过程,应用玻-马定律,那么如何确定一定质量的气体呢?(2)研究对象的初末态如何确定?(3)管插入水中一半时,管内水面的高度应是图2-1-5中a、b、c的哪个位置?为什么解答:设玻璃管的横截面积为S初态:玻璃管口和水面接触但还没有插入之时,此后管内气体为一定质量的气体p1=p0,V1=1S末态:管插入水中一半时,如图2-1-5所示,位置c是合理的因为管插入水中,温度一定,气体体积减小,压强增大,只有pcp0,所以c位置合理设进入管内的水柱的高度是x,则p2=p0+g(0.5-x),V2=(1-x)S,根据玻-马定律:p1V1=p2V2,所以p0×1S=p0+g(0.5-x)×(1-x)S,得x=0.05m例5一根长度为1m,一端封闭的内径均匀的细直玻璃管,管内用20cm长的水银柱封住一部分空气当管口向上竖直放置时,被封住的空气柱长49cm问缓慢将玻璃旋转,当管口向下倒置时,被封住的空气柱长度是多少?假设p0=76cmHg,气体温度不变对例题5大多数学生做出如下解答:p1=p0+h=76+20=96(cmHg)V1=49Sp2=p0-h=76-20=56(cmHg)V2=HSp1V1=p2V2所以H=84(cm)解答到此,有部分同学意识到此时空气柱加水银柱的长度H+h=84+20=104(cm)已大于玻璃管的长度1m了,说明水银早已经溢出!所以,管倒置后,p2=p0-hV2=HS,H+h=L所以h=18.5(cm),H=81.5(cm)例6内径均匀的U形管中装入水银,两管中水银面与管口的距离均为l=10cm,大气压强p0=75.8cmHg时,将右管口密封,如图2-1-6所示,然后从左侧管口处将一活塞缓慢向下推入管中,直到左右两侧水银面高度差h=6cm时为止求活塞在管内移动的距离提问:(1)缓慢向下推是什么意思?(2)本题中有左右两部分定质量的气体,能分别写出它们初、末态的状态参量吗?(3)两部分气体间有什么联系?画出示意图解答:缓慢压缩的含义是整个过程中系统保持温度不变,且水银柱处于平衡态设管的横截面积为S,则:左管气体:初态:pA0=p0,VA0=lS=10S末态:pA=?,VA=?右管气体:初态;pB0=p0,VB0=lS=10S末态:pB=?,VB=?画出变化前后的示意图,如图2-1-7所示:一般认为液体不易压缩,U形管中,左管液面下降l,右管液面必上升l,则两管液面的高度差为2l,在本题中2l=h从上面的示意图中可知:pA=pB+h,VA=(l-x+h/2)SVB=(l-h/2)分别对左右管内的气体应用玻马定律,代入数据,得:x=6.4cm2等容过程查理定律(1)内容:提问:法国科学家查理通过实验研究,发现的定律的表述内容是什么?把查理定律“外推”到零压强而引入热力学温标后,查理定律的表述内容又是什么?内容:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1,增加(或减少)的压强等于它0时压强的1/273一定质量的气体,在体积不变的情况下,它的压强和热力学温标成正比3等压变化盖·吕萨克定律(1)内容:(2)表达式:内容:一定质量的气体,在压强不变的情况下,它的体积和热力学温标成正比 例7一个质量不计的活塞将一定量的理想气体封闭在上端开口的直立筒形气缸内,活塞上堆放着铁砂,如图2-1-8所示最初活塞搁置在气缸内壁的卡环上,气柱的高度H0,压强等于大气压强p0现对气体缓慢加热,当气体温度升高了T=60K时,活塞(及铁砂)开始离开卡环而上升继续加热,直到气柱高度H1=1.5H0此后在维持温度不变的条件下逐渐取走铁砂,直到铁砂被全部取走时,气柱高度变为H2=1.8H0求此时气体的温度(不计气缸和活塞间的摩擦)分析:以封闭在气缸内的一定质量的理想气体为研究对象,(1)从最初活塞搁置在气缸内壁的卡环上,到当气体温度升高了T=60K时,活塞(及铁砂)开始离开卡环这一过程气体的哪个状态参量没有发生变化?(2)从当气体温度升高了T=60K时,活塞(及铁砂)开始离开卡环而上升,直到气柱高度H1=1.5H0这一过程气体的哪个状态参量没有发生变化?(3)此后的过程气体的哪个状态参量没有发生变化?回答完上面的三个问题后,相信同学们能够自己解答出此题了学生回答提问:(1)体积不变,所以此过程为等容变化(2)压强不变,所以此过程为等压变化(3)温度不变,所以此过程为等温变化学生的两种解法:解法一:以封闭在气缸内的一定质量的理想气体为研究对象,设最初活塞搁置在气缸内壁的卡环上时,气体的温度为T0,气体的压强为p0,体积为V0=H0S,则活塞(及铁砂)开始离开卡环时的温度T1=T0+T,气体的压强为p1,体积为V1,因为等容变化,V1=V0,根据查理定律,设气柱高度为H1时,气体温度为T2,体积为V2=H1S,压强为p2,因为是等压变化,p2=p1,根据盖·吕萨克定律,设气柱高度为H2时,气体温度为T3,体积为V3=H2S,压强为p3,因为铁砂全部取走时p3=p0,又因为是等温变化,T3=T2,根据玻-马定律,p3V3=p2V2,p0H0=p1H1 (3)由(1)、(3)两式解得:由(2)、(4)两式解得:由(5)、(6)两式解得: 解法二:以封闭在气缸内的一定质量的理想气体为研究对象,设最S初活塞搁置在气缸内壁的卡环上时,气体的温度为T0,则活塞(及铁砂)开始离开卡环时的温度为T0+T,设气柱高度为H1时,气体温度为T1,气柱高度为H2时,气体温度为T2,由等压过程得由初态和末态的压强相等,得由(1)、(2)两式解得:说明:气缸内的封闭气体先后经历了四个状态、三个过程可以建立如下图景:利用上述图景,可以使复杂的过程清晰展现,所以分析物理图景是解题非常关键的步骤专心-专注-专业