2008年天津市高考数学试卷(文科)答案与解析(共13页).doc
-
资源ID:16666692
资源大小:190.50KB
全文页数:14页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2008年天津市高考数学试卷(文科)答案与解析(共13页).doc
精选优质文档-倾情为你奉上2008年天津市高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1(5分)(2008天津)设集合U=xN|0x8,S=1,2,4,5,T=3,5,7,则S(CUT)=()A1,2,4B1,2,3,4,5,7C1,2D1,2,4,5,6,8【考点】交、并、补集的混合运算;交集及其运算菁优网版权所有【分析】根据集合补集和交集的运算规则直接求解【解答】解:因为U=1,2,3,4,5,6,7,8,CUT=1,2,4,6,8,所以S(CUT)=1,2,4,故选A【点评】本题考查集合的基本运算,属简单题2(5分)(2008天津)设变量x,y满足约束条件,则目标函数z=5x+y的最大值为()A2B3C4D5【考点】简单线性规划的应用菁优网版权所有【专题】计算题【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数Z=5x+y的最小值【解答】解:满足约束条件的可行域如图,由图象可知:目标函数z=5x+y过点A(1,0)时z取得最大值,zmax=5,故选D【点评】在解决线性规划的问题时,我们常用“角点法”,其步骤为:由约束条件画出可行域求出可行域各个角点的坐标将坐标逐一代入目标函数验证,求出最优解3(5分)(2008天津)函数(0x4)的反函数是()Ay=(x1)2(1x3)By=(x1)2(0x4)Cy=x21(1x3)Dy=x21(0x4)【考点】反函数菁优网版权所有【专题】计算题【分析】根据反函数的定义,直接求函数(0x4)的反函数【解答】解:当0x4时,解;即f1(x)=(x1)2,故选A【点评】本题考查反函数的求法,注意函数的定义域,考查计算能力,是基础题4(5分)(2008天津)若等差数列an的前5项和S5=25,且a2=3,则a7=()A12B13C14D15【考点】等差数列的前n项和;等差数列的通项公式菁优网版权所有【专题】计算题【分析】利用等差数列的通项公式和前n项和公式,结合已知条件列出关于a1,d的方程组,解出a1,d,然后代入通项公式求解即可【解答】解:设an的公差为d,首项为a1,由题意得,解得,a7=1+6×2=13,故选B【点评】本题考查了等差数列的通项公式、前n项和公式,熟练应用公式是解题的关键5(5分)(2008天津)设a,b是两条直线,是两个平面,则ab的一个充分条件是()Aa,b,Ba,b,Ca,b,Da,b,【考点】空间中直线与直线之间的位置关系;必要条件、充分条件与充要条件的判断菁优网版权所有【分析】根据题意分别画出错误选项的反例图形即可【解答】解:A、B、D的反例如图故选C【点评】本题考查线面垂直、平行的性质及面面垂直、平行的性质,同时考查充分条件的含义及空间想象能力6(5分)(2008天津)把函数y=sinx(xR)的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是()A,xRB,xRC,xRD,xR【考点】函数y=Asin(x+)的图象变换菁优网版权所有【专题】常规题型【分析】根据左加右减的性质先左右平移,再进行伸缩变换即可得到答案【解答】解:由y=sinx的图象向左平行移动个单位得到y=sin(x+),再把所得图象上所有点的横坐标缩短到原来的倍得到y=sin(2x+)故选C【点评】本题主要考查函数y=Asin(x+)的图象变换,平移变换时注意都是对单个的x或y来运作的7(5分)(2008天津)设椭圆(m0,n0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为()ABCD【考点】椭圆的标准方程菁优网版权所有【专题】计算题;分析法【分析】先求出抛物线的焦点,确定椭圆的焦点在x轴,然后对选项进行验证即可得到答案【解答】解:抛物线的焦点为(2,0),椭圆焦点在x轴上,排除A、C,由排除D,故选B【点评】本题主要考查抛物线焦点的求法和椭圆的基本性质圆锥曲线是高考的必考内容,其基本性质一定要熟练掌握8(5分)(2008天津)已知函数,则不等式f(x)x2的解集是()A1,1B2,2C2,1D1,2【考点】一元二次不等式的解法菁优网版权所有【分析】已知分段函数f(x)求不等式f(x)x2的解集,要分类讨论:当x0时;当x0时,分别代入不等式f(x)x2,从而求出其解集【解答】解:当x0时;f(x)=x+2,f(x)x2,x+2x2,x2x20,解得,1x2,1x0;当x0时;f(x)=x+2,x+2x2,解得,2x1,0x1,综上知不等式f(x)x2的解集是:1x1,故选A【点评】此题主要考查一元二次不等式的解法,在解答的过程中运用的分类讨论的思想,是一道比较基础的题目9(5分)(2008天津)设,则()AabcBacbCbcaDbac【考点】正弦函数的单调性;不等式比较大小;余弦函数的单调性;正切函数的单调性菁优网版权所有【专题】压轴题【分析】把a,b转化为同一类型的函数,再运用函数的单调性比较大小【解答】解:,b=而,sinx在(0,)是递增的,所以,故选D【点评】此题考查了三角函数的单调性以及相互转换10(5分)(2008天津)设a1,若对于任意的xa,2a,都有ya,a2满足方程logax+logay=3,这时a的取值集合为()Aa|1a2Ba|a2Ca|2a3D2,3【考点】幂函数的实际应用菁优网版权所有【专题】压轴题【分析】先由方程logax+logay=3解出y,转化为函数的值域问题求解【解答】解:由logax+logay=3,可得loga(xy)=3,得,在a,2a上单调递减,所以,故a2故选B【点评】本题考查对数式的运算、反比例函数的值域、集合的关系等问题,难度不大注意函数和方程思想的应用二、填空题(共6小题,每小题4分,满分24分)11(4分)(2008天津)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工10人【考点】分层抽样方法菁优网版权所有【专题】压轴题【分析】本题是一个分层抽样,根据单位共有职工200人,要取一个容量为25的样本,得到本单位每个职工被抽到的概率,从而知道超过45岁的职工被抽到的概率,得到结果【解答】解:本题是一个分层抽样,单位共有职工200人,取一个容量为25的样本,依题意知抽取超过45岁的职工为故答案为:10【点评】本题主要考查分层抽样,分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法12(4分)(2008天津)的二项展开式中,x3的系数是10(用数字作答)【考点】二项式系数的性质菁优网版权所有【专题】计算题【分析】利用二项展开式的通项公式求出展开式中第r+1项,令x的指数为3得解【解答】解:Tr+1=,令52r=3得r=1,所以x3的系数为(2)1C51=10故答案为10【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具13(4分)(2008天津)若一个球的体积为,则它的表面积为12【考点】球的体积和表面积菁优网版权所有【专题】计算题【分析】有球的体积,就可以利用公式得到半径,再求解其面积即可【解答】解:由得,所以S=4R2=12【点评】本题考查学生对公式的利用,是基础题14(4分)(2008天津)已知平面向量=(2,4),=(1,2)若=8【考点】平面向量数量积的运算;向量的模菁优网版权所有【专题】计算题【分析】根据所给的两个向量的坐标,得到两个向量的数量积,列出关于的坐标的关系式,利用坐标形式的向量的加减和数乘运算得到要求的向量,利用求模长的公式得到结果【解答】解:=(2,4),=(1,2),=2+8=6,=(2,4)6(1,2)=(8,8),|=8故答案为:8【点评】本题考查坐标形式的向量的数量积和向量的减法和数乘运算,以及向量的模长运算,是一个基础题,在解题时主要应用向量的坐标形式,这样题目变成简单的数字的运算15(4分)(2008天津)已知圆C的圆心与点P(2,1)关于直线y=x+1对称直线3x+4y11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为x2+(y+1)2=18【考点】直线与圆的位置关系菁优网版权所有【专题】计算题;压轴题【分析】要求圆C的方程,先求圆心,设圆心坐标为(a,b),根据圆心与P关于直线y=x+1对称得到直线PC垂直与y=x+1且PC的中点在直线y=x+1上分别列出方程,联立求出a和b即可;再求半径,根据垂径定理得到|AB|、圆心到直线AB的距离及圆的半径成直角三角形,根据勾股定理求出半径写出圆的方程即可【解答】解:设圆心坐标C(a,b),根据圆心与P关于直线y=x+1对称得到直线CP与y=x+1垂直,而y=x+1的斜率为1,所以直线CP的斜率为1即=1化简得a+b+1=0,再根据CP的中点在直线y=x+1上得到=+1化简得ab1=0联立得到a=0,b=1,所以圆心的坐标为(0,1);圆心C到直线AB的距离d=3,|AB|=3所以根据勾股定理得到半径,所以圆的方程为x2+(y+1)2=18故答案为:x2+(y+1)2=18【点评】此题是一道综合题,要求学生会求一个点关于直线的对称点,灵活运用垂径定理及点到直线的距离公式解决数学问题会根据圆心和半径写出圆的方程16(4分)(2008天津)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行如果取出的4张卡片所标数字之和等于10,则不同的排法共有432种(用数字作答)【考点】排列、组合的实际应用菁优网版权所有【专题】计算题;压轴题【分析】根据题意,分析可得,数字之和为10的情况有4,4,1,1;4,3,2,1; 3,3,2,2;再依次求得每种情况下的排法数目,进而由加法原理,相加可得答案【解答】解:数字之和为10的情况有4,4,1,1;4,3,2,1; 3,3,2,2;取出的卡片数字为4,4,1,1时;有A44种不同排法;取出的卡片数字为3,3,2,2时;有A44种不同排法;取出的卡片数字为4,3,2,1时;每个数字都有两种不同的取法,则有24A44种不同排法;所以共有2A44+24A44=18A44=432种不同排法【点评】本题考查排列的应用,解题时注意数字可能来自一种卡片还是两种卡片三、解答题(共6小题,满分76分)17(12分)(2008天津)已知函数f(x)=2cos2x+2sinxcosx+1(xR,0)的最小值正周期是()求的值;()求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合【考点】三角函数的周期性及其求法;三角函数的最值菁优网版权所有【专题】计算题【分析】(1)先用二倍角公式和两角和公式对函数解析式进行化简,进而根据函数的最小正周期求得(2)根据正弦函数的性质可知时,函数取最大值2+,进而求得x的集合【解答】解:()解:=sin2x+cos2x+2=由题设,函数f(x)的最小正周期是,可得,所以=2()由()知,当,即时,取得最大值1,所以函数f(x)的最大值是,此时x的集合为【点评】本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数y=Asin(x+)的性质等基础知识,考查基本运算能力18(12分)(2008天津)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为()求乙投球的命中率p;()求甲投球2次,至少命中1次的概率;()若甲、乙两人各投球2次,求两人共命中2次的概率【考点】互斥事件的概率加法公式;等可能事件的概率;相互独立事件的概率乘法公式菁优网版权所有【专题】计算题【分析】()设出事件,根据运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为,写出关于p的方程,解方程即可把不合题意的结果舍去(II)甲投球2次,至少命中1次,表示有一次命中,或有两次命中,写出事件对应的概率表示式,得到结果(III)甲、乙两人各投球2次,两人共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次这三种情况是互斥的,写出概率【解答】解:()设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B由题意得解得或(舍去),乙投球的命中率为()由题设和()知故甲投球2次至少命中1次的概率为()由题设和()知,甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次概率分别为,所以甲、乙两人各投两次,共命中2次的概率为【点评】本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力本题的第二问也可以这样解由题设和()知故甲投球2次至少命中1次的概率为19(12分)(2008天津)如图,在四棱锥PABCD中,底面ABCD是矩形已知AB=3,AD=2,PA=2,PD=2,PAB=60°()证明AD平面PAB;()求异面直线PC与AD所成的角的大小;()求二面角PBDA的大小【考点】与二面角有关的立体几何综合题;异面直线及其所成的角;直线与平面垂直的判定菁优网版权所有【专题】计算题【分析】(I)由题意在PAD中,利用所给的线段长度计算出ADPA,在利用矩形ABCD及线面垂直的判定定理及、此问得证;(II)利用条件借助图形,利用异面直线所称角的定义找到共面得两相交线,并在三角形中解出即可;(III)由题中的条件及三垂线定理找到二面角的平面角,然后再在三角形中解出角的大小即可【解答】解:()证明:在PAD中,由题设PA=2,PD=2,可得PA2+AD2=PD2于是ADPA在矩形ABCD中,ADAB又PAAB=A,所以AD平面PAB()解:由题设,BCAD,所以PCB(或其补角)是异面直线PC与AD所成的角在PAB中,由余弦定理得PB=由()知AD平面PAB,PB平面PAB,所以ADPB,因而BCPB,于是PBC是直角三角形,故tanPCB=所以异面直线PC与AD所成的角的大小为arctan()解:过点P做PHAB于H,过点H做HEBD于E,连接PE因为AD平面PAB,PH平面PAB,所以ADPH又ADAB=A,因而PH平面ABCD,故HE为PE在平面ABCD内的射影由三垂线定理可知,BDPE,从而PEH是二面角PBDA的平面角由题设可得,PH=PAsin60°=,AH=PAcos60°=1,BH=ABAH=2,BD=,HE=于是在RTPHE中,tanPEH=所以二面角PBDA的大小为arctan【点评】本小题主要考查直线和平面垂直,异面直线所成的角、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力,还考查了利用反三角函数的知识求出角的大小20(12分)(2008天津)在数列an中,a1=1,a2=2,且an+1=(1+q)anqan1(n2,q0)()设bn=an+1an(nN*),证明bn是等比数列;()求数列an的通项公式;()若a3是a6与a9的等差中项,求q的值,并证明:对任意的nN*,an是an+3与an+6的等差中项【考点】等比关系的确定;等差数列的性质;数列递推式菁优网版权所有【专题】综合题【分析】()整理an+1=(1+q)anqan1得an+1an=q(anan1)代入bn中进而可证明bn是等比数列()由()可分别求得a2a1,a3a2,anan1,将以上各式相加,答案可得()由(),当q=1时,显然a3不是a6与a9的等差中项,判断q1根据a3是a6与a9的等差中项,求得q用q分别表示出an,an+3与an+6进而根据等差中项的性质可得结论【解答】解:()证明:由题设an+1=(1+q)anqan1(n2),得an+1an=q(anan1),即bn=qbn1,n2又b1=a2a1=1,q0,所以bn是首项为1,公比为q的等比数列()由()a2a1=1,a3a2=q,anan1=qn2,(n2)将以上各式相加,得ana1=1+q+qn2(n2)所以当n2时,上式对n=1显然成立()由(),当q=1时,显然a3不是a6与a9的等差中项,故q1由a3a6=a9a3可得q5q2=q2q8,由q0得q31=1q6,整理得(q3)2+q32=0,解得q3=2或q3=1(舍去)于是另一方面,由可得anan+3=an+6an,nN*所以对任意的nN*,an是an+3与an+6的等差中项【点评】本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前n项和公式,考查运算能力和推理论证能力及分类讨论的思想方法21(14分)(2008天津)已知函数f(x)=x4+ax3+2x2+b(xR),其中a,bR()当时,讨论函数f(x)的单调性;()若函数f(x)仅在x=0处有极值,求a的取值范围;()若对于任意的a2,2,不等式f(x)1在1,1上恒成立,求b的取值范围【考点】利用导数研究函数的单调性;函数恒成立问题;利用导数研究函数的极值;利用导数求闭区间上函数的最值菁优网版权所有【专题】计算题;压轴题【分析】(1)将a的值代入后对函数f(x)进行求导,当导函数大于0时求原函数的单调增区间,当导函数小于0时求原函数的单调递减区间(2)根据函数f(x)仅在x=0处有极值说明f'(x)=0仅有x=0一个根得到答案(3)根据函数f(x)的单调性求出最大值,然后令最大值小于等于1恒成立求出b的范围【解答】解:()f'(x)=4x3+3ax2+4x=x(4x2+3ax+4)当时,f'(x)=x(4x210x+4)=2x(2x1)(x2)令f'(x)=0,解得x1=0,x3=2当x变化时,f'(x),f(x)的变化情况如下表: x (,0) 0 (0,) (,2) 2 (2,+) f(x) 0+ 0 0+ f(x) 极小值极大值 极小值 所以f(x)在,(2,+)内是增函数,在(,0),内是减函数()f'(x)=x(4x2+3ax+4),显然x=0不是方程4x2+3ax+4=0的根为使f(x)仅在x=0处有极值,必须4x2+3ax+40成立,即有=9a2640解些不等式,得这时,f(0)=b是唯一极值因此满足条件的a的取值范围是()由条件a2,2,可知=9a2640,从而4x2+3ax+40恒成立当x0时,f'(x)0;当x0时,f'(x)0因此函数f(x)在1,1上的最大值是f(1)与f(1)两者中的较大者为使对任意的a2,2,不等式f(x)1在1,1上恒成立,当且仅当,即,在a2,2上恒成立所以b4,因此满足条件的b的取值范围是(,4【点评】本小题主要考查利用导数研究函数的单调性、函数的最大值、解不等式等基础知识,考查综合分析和解决问题的能力22(14分)(2008天津)已知中心在原点的双曲线C的一个焦点是F1(3,0),一条渐近线的方程是()求双曲线C的方程;()若以k(k0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围【考点】双曲线的应用菁优网版权所有【专题】计算题;压轴题【分析】(1)设出双曲线方程,根据焦点坐标及渐近线方程求出待定系数,即得双曲线C的方程(2)设出直线l的方程,代入双曲线C的方程,利用判别式及根与系数的关系求出MN的中点坐标,从而得到线段MN的垂直平分线方程,通过求出直平分线与坐标轴的交点,计算围城的三角形面积,由判别式大于0,求得k的取值范围【解答】解:()解:设双曲线C的方程为(a0,b0)由题设得,解得,所以双曲线方程为()解:设直线l的方程为y=kx+m(k0)点M(x1,y1),N(x2,y2)的坐标满足方程组将式代入式,得,整理得(54k2)x28kmx4m220=0此方程有两个不等实根,于是54k20,且=(8km)2+4(54k2)(4m2+20)0整理得m2+54k20 由根与系数的关系可知线段MN的中点坐标(x0,y0)满足,从而线段MN的垂直平分线方程为此直线与x轴,y轴的交点坐标分别为,由题设可得整理得,k0将上式代入式得,整理得(4k25)(4k2|k|5)0,k0解得或所以k的取值范围是【点评】本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力专心-专注-专业