反馈控制系统的数学模型及设计工具(共18页).doc
精选优质文档-倾情为你奉上反馈控制系统的数学模型及设计工具反馈系统的数学模型在系统分析和设计中起着很重要的作用,基于系统的数学模型,就可以用比较系统的方法对之进行分析,同时,一些系统的方法也是基于数学模型的,这就使得控制系统的模型问题显得十分重要。1数学模型的表示方法 线性时不变(LTI)系统模型包括传递函数模型( tf ),零极点增益模型( zpk ),状态空间模型( ss )和频率响应数据模型 ( frd ) 1.1 传递函数模型线性系统的传递函数模型可以表示成复数变量s的有理函数式:调用格式: G =tf (num, den)其中,分别是传递函数分子和分母多项式的系数向量,按照s的降幂排列.返回值G是一个tf 对象,该对象包含了传递函数的分子和分母信息。例1 一个传递函数模型 可以由下面命令输入到MATLAB工作空间去.>> num=1 2 3;den=1 2 3 4 5;G=tf(num,den) Transfer function: s2 + 2 s + 3-s4 + 2 s3 + 3 s2 + 4 s + 5对于传递函数的分母或分子有多项式相乘的情况, MATLAB提供了求两个向量的卷积函数conv( )函数求多项式相乘来解决分母或分子多项式的输入。conv( )函数允许任意地多层嵌套,从而表示复杂的计算.应该注意括号要匹配,否则会得出错误的信息与结果。例2 一个较复杂传递函数模型 该传递函数模型可以通过下面的语句输入到MATLAB工作空间去。>> num=2*conv(1 2,1 3);den=conv(conv(conv(1 1,1 1),1 6),1 2 3 4);G=tf(num,den) Transfer function: 2 s2 + 10 s + 12-s6 + 10 s5 + 32 s4 + 60 s3 + 83 s2 + 70 s + 24对于一个tf 对象,它有自己的属性(域元素),属性值既可以直接获取也可以通过函数get来获取。另外可以用函数set设置属性值。tf对象的属性有: >> set(tf) num: Ny-by-Nu cell of row vectors (Nu = no. of inputs) den: Ny-by-Nu cell of row vectors (Ny = no. of outputs) Variable: 's' | 'p' | 'z' | 'z-1' | 'q' Ts: Scalar (sample time in seconds) ioDelay: Ny-by-Nu array (I/O delays) InputDelay: Nu-by-1 vector OutputDelay: Ny-by-1 vector InputName: Nu-by-1 cell array of strings OutputName: Ny-by-1 cell array of strings InputGroup: M-by-2 cell array for M input groups OutputGroup: P-by-2 cell array for P output groups Notes: Array or cell array of strings UserData: Arbitrary将例2传递函数算子符号变为p,延迟时间设为0.5,可以使用两种MATLAB语句来实现:G.Variable='P'G.Td=0.5;或set(G,'Variable','p','Td',0.5);这时再显示G时,将得到:>> G Transfer function: 2 p2 + 10 p + 12exp(-0.5*p) * - p6 + 10 p5 + 32 p4 + 60 p3 + 83 p2 + 70 p + 24 也可用get()语句来获取属性:>> get(G)num: 0 0 0 0 2 10 12 den: 1 10 32 60 83 70 24 Variable: 'p' Ts: 0 ioDelay: 0 InputDelay: 0.5 OutputDelay: 0 InputName: '' OutputName: '' InputGroup: 0x2 cell OutputGroup: 0x2 cell Notes: UserData: 1.2 零极点模型零极点模型是描述单变量线性时不变系统传递函数的另一种常用方法,一个给定传递函数的零极点模型一般可以表示为 其中, , k 分别是系统的零点、极点和根轨迹增益。调用格式: G=zpk (z,p,k)注意:对单变量系统来说,系统的零极点应该用列向量来表示。同样,zpk对象有自己的属性值,该属性值可以用 get()函数来获取,用set()来设置。具体操作同tf对象属性的操作。zpk对象的属性有:>> set(zpk) z: Ny-by-Nu cell of vectors (Nu = no. of inputs) p: Ny-by-Nu cell of vectors (Ny = no. of outputs) k: Ny-by-Nu array of double Variable: 's' | 'p' | 'z' | 'z-1' | 'q' DisplayFormat: 'roots' | 'time-constant' | 'frequency' Ts: Scalar (sample time in seconds) ioDelay: Ny-by-Nu array (I/O delays) InputDelay: Nu-by-1 vector OutputDelay: Ny-by-1 vector InputName: Nu-by-1 cell array of strings OutputName: Ny-by-1 cell array of strings InputGroup: M-by-2 cell array for M input groups OutputGroup: P-by-2 cell array for P output groups Notes: Array or cell array of strings UserData: Arbitrary 例3 假设系统的零极点模型为 则该模型可以由下面语句输入到MATLAB工作空间去。>> k=2;z=-2;-1+j;-1-j;p=-1.4142+1.4142*j;-1.4142-1.4142*j;3.9765+0.0432*j;3.9765-0.0432*j;G=zpk(z,p,k) Zero/pole/gain: 2 (s+2) (s2 + 2s + 2)-(s2 - 7.953s + 15.81) (s2 + 2.828s + 4)1.3 状态方程模型状态方程式描述系统动态模型的另外一种方法,它不但适合于线性模型,也适于描述非线性模型。由一个例子引出状态方程模型:其微分方程为:若令,则有对于线性时不变系统来说,其状态方程为在Matlab下只需将各系数矩阵输到工作空间即可。 调用格式: G=ss(A,B,C,D)同样可以用set(ss)得到状态方程的所有域元素细节,get(G)得到模型的域值。例4 双输入双输出系统的状态方程表示为,该状态方程可以由下面语句输入到MATLAB工作空间去。>> A=1,2,0,4;3,-1,6,2;5,3,2,1;4,0,-2,7;B=2,3;1,0;5,2;1,1;C=0,0,2,1;2,2,0,1;D=zeros(2,2);G=ss(A,B,C,D)a = x1 x2 x3 x4 x1 1 2 0 4 x2 3 -1 6 2 x3 5 3 2 1 x4 4 0 -2 7 b = u1 u2 x1 2 3 x2 1 0 x3 5 2 x4 1 1 c = x1 x2 x3 x4 y1 0 0 2 1 y2 2 2 0 1 d = u1 u2 y1 0 0 y2 0 0 Continuous-time model.2 模型的基本结构 在实际应用中,系统的模型通常是由相互连接的模块构成的,本节将介绍相互连接的系统结构的总模型求取方法。2.1 串联连接结构图1 模块的信号连接 在串联连接下(如图1(a)所示),整个系统的传递函数为。对单变量系统来说,这两个模块是可以互换的,对多变量系统来说,一般不具备这样的关系。 假设在MATLAB下第一个模块的LTI对象为G1(它可以由tf,ss和zpk中任意的形式给出),而第二个模块的LTI对象为G2,则整个串联系统的LTI模型可以由下列MATLAB命令得出 G=G1*G2;2.2 并联连接结构 在并联连接下(如图1(b)所示),整个系统的传递函数为。假设在MATLAB下第一个模块的LTI对象为G1(它可以由tf,ss和zpk中任意的形式给出),而第二个模块的LTI对象为G2,则整个串联系统的LTI模型可以由下列MATLAB命令得出 G=G1+G2;图13.2 反馈连接结构2.3 反馈连接结构两个模块和正、负反馈连接后(如图2所示),系统总的模型分别为: 控制系统工具箱提供了feedback()函数,用来求取反馈连接下总的系统模型。调用格式:G=feedback (G1,G2,sign)其中变量sign为-1(或+1)表示负反馈(或正反馈),缺省为负反馈结构。G1、G2分别为前向、反向模型的LTI对象,G为总系统模型。例5 有两个模型,如果采用负反馈结构可以用下面的MATLAB语句得到整个系统的传递函数模型。>> G1=tf(1,1,2,1);G2=tf(1,2,1,7,12);G=feedback(G1,G2) Transfer function: s2 + 7 s + 12-s4 + 9 s3 + 27 s2 + 32 s + 14若采用正反馈连接结构,则得出下面结果>>G=feedback(G1,G2,+1) Transfer function: s2 + 7 s + 12-s4 + 9 s3 + 27 s2 + 30 s + 102.4 复杂系统的传递函数求取: 控制系统工具箱提供了一个.m函数connect( )和一个.m文件blkbuild来求取含有相互连接模块的模型.具体的求取过程如下:1. 将通路排号;2. 用blkbuild文件建立原始模型的增广状态方程模型;3. 建立连接关系矩阵Q;4. 用connect建立整个系统的模型。3 不同模型对象的相互转换和模型数据的还原3.1 模型对象的相互转换 LTI对象模型可以用不同形式描述,它们之间可以相互转换,转换关系如图3所示。图3 模型对象之间转换关系3.2模型数据的还原前面我们学习了建立连续LTI系统模型的tf ,zpk,ss函数,MATLAB还提供了相应的函数可以把建立模型时的数据(输入参数)还原出来.这些函数的用法如下,num,den=tfdata( G )z,p,k=zpkdata( G )A,B,C,D=ssdata(G)显示还原变量的数据用num,den=tfdata( G ,v)z,p,k=zpkdata( G ,v)A,B,C,D=ssdata(G,v)例6 还原例5负反馈模型数据,可用下面的MATLAB语句 >> num,den=tfdata( G ,'v')num = 0 0 1 7 12den = 1 9 27 30 10 >> z,p,k=zpkdata( G ,'v')z = -4 -3p = -3.6180 -3.4142 -1.3820 -0.5858k = 14 控制系统分析与设计.4.1 控制系统的线性分析1. 线性时不变系统浏览器LTI Viewer介绍图4 系统响应曲线绘制选择在默认情况下,使用LTI Viewer进行系统的线性分析时,LTI Viewer浏览器窗口所显示的图形为系统在单位阶跃信号作用下的系统响应。其实,LTI Viewer浏览器提供了极其丰富的功能,它可以使用户对系统进行非常详细的线性分析。下面以传递函数为为例对LTI Viewer进行详细的介绍与说明。 绘制系统的不同响应曲线图5 控制系统单位脉冲响应曲线在默认的情况下,LTI Viewer绘制系统在单位阶跃信号输入下的系统响应曲线(即阶跃响应)。其实使用LTI Viewer可以绘制不同的系统响应,在LTI Viewer图形绘制窗口中单击鼠标右键,选择弹出菜单Plot Type下的子菜单,可以在LTI Viewer图形绘制窗口中绘制不同的系统响应曲线,如图4所示。如果用户选择Impulse命令,则可以绘制系统的单位脉冲响应曲线,如图5所示。除此之外,使用LTI Viewer还可以绘制系统的波特图(Bode)、波特图幅值图(Bode Mag)、奈奎斯特图(Nyquist)、尼科尔斯图(Nichols)、奇异值分析(Sigma)以及零极点图(PoleZero)等,其方法与绘制脉冲响应一致。 改变系统响应曲线绘制布局在默认的情况下,LTI Viewer图形绘制窗口中仅仅绘制一个系统响应曲线。如果用户需要同时绘制多个系统响应曲线图,则可以使用LTI Viewer窗口中Edit菜单下的Plot configurations对LTI Viewer图形绘制窗口的布局进行改变,并在指定的位置绘制指定的响应曲线。图6为响应曲线绘制布局设置对话框,以及采用图中给出的设置同时绘制6幅不同的响应曲线。用户可以选择LTI Viewer所提供的6种不同的绘制布局,在指定的区域绘制自己感兴趣的响应曲线。LTI Viewer相应曲线绘制布局不同绘制区域的相应曲线类型选择图6 响应曲线布局设计及绘制结果 系统时域与频域性能分析使用LTI Viewer不仅可以方便地绘制系统的各种响应曲线,还可以从系统响应曲线中获得系统响应信息,从而使用户可以对系统性能进行快速地分析。首先,通过单击系统响应曲线上任意一点,可以获得动态系统在此时刻的所有信息,包括运行系统的名称,以及其它与此响应类型相匹配的系统性能参数。以传递函数的控制系统的单位阶跃响应为例,单击响应曲线中的任意一点,可以获得系统响应曲线上此点所对应的系统运行时刻(Time)、系统输入值(Amplitude)等信息,如图7所示。图7 从系统响应曲线获得系统运行信息图8 阶跃响应的特性参数其次,用户可以在LTI Viewer图形绘制窗口中单击鼠标右键,使用右键弹出菜单中的Characteristics子菜单获得系统不同响应的特性参数,对于不同的系统响应类型,Characteristics菜单的内容并不相同。图8所示为阶跃响应的特性参数。选择Characteristics右键弹出菜单中的Setting Time可以获得系统阶跃响应的调节时间。此时在LTI Viewer绘制的阶跃响应曲线中将出现调节时间标记点,单击此标记点即可获得调节时间,如图9所示。图9 阶跃响应的调节时间对于不同类型的系统响应曲线而言,用来描述响应特性的参数各异。虽然不同响应曲线的特性参数不相同,但是均可以使用类似的方法从系统响应曲线中获得相应的信息。图10 Toolbox Preferences对话框 LTI Viewer图形界面的高级控制前面简单介绍了LTI Viewer响应曲线绘制窗口的布局设置。Simulink最为突出的特点之一就是其强大的图形功能。在Simulink中,任何图形都是特定的对象,用户可以对其进行强有力的操作与控制。下面介绍如何对LTI Viewer图形窗口进行更为高级的控制。对LTI Viewer图形窗口的控制有两种方式。一是对整个浏览器窗口Viewer进行控制:单击LTI Viewer窗口的Edit菜单下的Toolbox Preferences命令对浏览器进行设置(此设置的作用范围为LTI Viewer窗口以及所有系统响应曲线绘制区域)。在此对话框中共有4个选项卡,如图10所示: (1) Units选项卡:设置图形显示时频率、幅值以及相位的单位。(2) Style选项卡: 设置图形显示时的字体、颜色以及绘图网格。(3) Characteristics选项卡:设置系统响应曲线的特性参数。(4) Parameters选项卡:设置系统响应输出的时间变量与频率变量。图11 Properties对话框二是对某一系统响应曲线绘制窗口进行操作:在系统响应曲线绘制窗口中单击鼠标右键,选择弹出菜单中的Properties对指定响应曲线的显示进行设置。此对话框中共有5个选项卡,如图11所示:(1)Labels选项卡:设置系统响应曲线图形窗口的坐标轴名称、窗口名称。(2)Limits选项卡:设置坐标轴的输出范围。(3)Units选项卡:设置系统响应曲线图形窗口的显示单位。(4)Style选项卡:设置系统响应曲线图形窗口的字体、颜色以及绘制网格。(5)Characteristics选项卡:设置系统响应曲线的特性参数。注意:对于不同的系统响应曲线,其特性参数不相同,故Characteristics选项卡中内容也不相同。2. LTI线性时不变系统对象介绍LTI对象有如下的三种方式: (1) ss对象:封装了由状态空间模型描述的线性时不变系统的所有数据。 (2) tf对象:封装了由传递函数模型描述的线性时不变系统的所有数据。 (3) zpk对象:封装了由零极点模型描述的线性时不变系统的所有数据。 · LTl对象的属性 不同的LTI对象除了拥有某些共同的属性之外,还有属于每种对象本身的特殊属性。使用get命令,可以获得LTI对象的所有属性。仍以为例。 >>get(G) num: 0 1 2 den: 1 2 3 Variable: 's' Ts: 0 ioDelay: 0 InputDelay: 0 OutputDelay: 0 InputName: '' OutputName: '' InputGroup: 1x1 struct OutputGroup: 1x1 struct Notes: UserData: 其中从Ts开始之后的属性为所有LTI对象均具有的属性,分别用来描述LTI系统的采样时间、输入输出延迟、输入输出端口名称以及其它用户自定义的数据等等。而在Ts之前的属性则属于不同对象本身所特有的,用来描述线性时不变系统, 相应地,使用set命令可以对LTI对象的指定属性进行修改,其使用方法与设置系统模型或其中的系统模块的属性相类似。· 对LTI对象的基本操作由于LTI对象是控制工具箱中最基本的数据类型,因而MATLAB支持对LTI对象的直接操作。用户可以使用控制工具箱中的系统分析设计命令对这些LTI对象进行操作,而且由于LTI对象包括线性系统是连续还是离散的信息,因此可以使用同样的命令对连续系统与离散系统进行操作。这里仅介绍LTI对象本身的一些简单操作。(1) 生成LTI对象。使用ss、tf及tpk可以建立不同类型的LTI对象,如使用tf命令建立使用传递函数描述的线性时不变系统对象。 >>mysys_tf=tf(1 2, 1 2 3) 生成tf对象mysys_tf Transferfunction: s + 2-s2 + 2 s + 3(2) LTl对象问的相互转换。同样可以使用ss、tf及zpk进行LTI对象之间的相互转换,如 >>mysys_ss=ss(mysys_tf) 将tf对象转换为ss对象a = x1 x2 x1 -2 -0.75 x2 4 0 b = u1 x1 1 x2 0 c = x1 x2 y1 1 0.5 d = u1 y1 0Continuous-time model 指明系统为连续时间系统 (3) 线性时不变系统的并联,即LTI对象的相加,如 >> sys1=tf(1 2,1 2 3); 生成系统1 >> sys2=tf(1 1,3 2 -1); 生成系统2 >>sys=sysl+sys2 并联系统1与2 Transfer function: 4 s3 + 11 s2 + 8 s + 1-3 s4 + 8 s3 + 12 s2 + 4 s - 3 4.2 线性控制系统设计分析在控制系统的设计分析之中,线性系统的设计、仿真分析与实现具有重要的地位。在MATLAB中所提供的控制系统工具箱对控制系统的设计提供了强大的支持,用户可以使用控制系统工具箱设计与分析控制系统,然后使用Simulink对所设计的控制系统进行仿真分析,并在需要的情况下修改控制系统的设计以达到特定的目的,从而使得用户快速完成系统设计的任务,大大提高设计的效率。1. 控制系统工具箱简介控制系统下具箱是MATLAB中所提供的对控制系统进行辅助设计的功能强大的开发设计工具。它包含了丰富的线性系统分析和设计函数,并以LTI对象为基本数据类型对线性时不变系统进行操作与控制。控制系统工具箱能够完成系统的时域和频域分析。在控制系统工具箱中,可以使用不同的方法设计线性反馈系统,如(1) 根轨迹设计分析法。(2) 极点配置法。(3) H2和H控制。(4) 状态观测器设计。(5) 规范型实现设计。在使用控制系统工具箱完成线性反馈系统设计之后,便可以通过Simulink进行系统的动态仿真,从而得到真实的、非线性系统的响应,进一步对控制器进行验证。2. 系统分析与设计简介控制系统工具箱中最基本的数据类型为LTI对象。无论LTI对象的类型如何,都可以使用相同的命令对其进行分析,因为LTI对象包含了线性时不变系统的所有信息。这里简单介绍一下用来对由LTI对象所描述的线性时不变系统进行分析设计的命令函数。· 动态分析函数动态分析函数有pole(sys)、dcgain(sys)、tzero(sys)、damp(sys)及norm(sys)等等。对于由如下命令: >> mysys_tf=tf(1 2,1 2 3);生成的LTI对象mysys_tf所描述的线性时不变系统,可以使用下述函数对其进行分析,例如: >>pole(mysys_tf) 求取系统极点 ans = -1.0000 + 1.4142i -1.0000 - 1.4142i >>dcgain(mysys_tf) 求取系统直流增益 ans = 0.6667· 时域与频域分析函数时域-与频域分析函数有step(sys)、bode(sys)、impulse(sys)、nichols(sys)、initial(sys,x0)、nyquist(sys)、lsim(sys,u,t)以及sigma(sys)等。例如: >>step(mysys_tf) 绘制系统的单位阶跃响应曲线 >>figure,nyquist(mysys_tf) 在新的图形窗口绘制系统的nyqmst图使用这两个命令分别绘制线性时不变系统mysys_tf的单位阶跃响应与nyquist图,与LTI Viewer中系统响应曲线的操作相类似,用户可以使用右键弹出式菜单获得系统的时域(或频域)的动态响应(或动态性能),如图12所示。图12 线性时不变系统mysys_tf的阶跃响应曲线与nyquist图· 补偿器设计使用控制系统工具箱中的函数还可以进行各种系统的补偿设计,如LQG(Linear-Quadratic-Gaussian,线性二次型设计)、Root Locus(线性系统的根轨迹设计)、Pole placement(线性系统的极点配置)以及Observer-based regulator(线性系统观测器设计)等。由于这些内容涉及较多的知识,在此不作介绍。在实际的系统设计中,只要系统经过线性化处理,使用LTI线性时不变系统模型来表示,用户都可以使用若干个线性系统控制器的设计方法来进行设计。3. 单输入单输出系统设计工具在对非线性系统的线性分析技术进行介绍时,线性时不变系统浏览器LTI Viewer是进行系统线性分析的最为直观的图形界面,使用LTI Viewer使得用户对系统的线性分析变得简单而直观。其实LTI Viewer只是控制系统工具箱中所提供的较为简单的工具,主要用来完成系统的分析与线性化处理,而并非系统设计。SISO设计器是控制系统工具箱所提供的一个非常强大的单输入单输出线性系统设计器,它为用户设计单输入单输出线性控制系统提供了非常友好的图形界面。在SISO设计器中,用户可以同时使用根轨迹图与波特图,通过修改线性系统零点、极点以及增益等传统设计方法进行SISO线性系统设计。下面仍以tf对象mysys_tf为例说明SISO设计器的使用。· 启动SlSO设计器在MATLAB命令窗口中键入如下的命令启动SISO设计器:>>sisotool启动后的SISO设计器如图13所示。在默认的情况下SISO设汁器同时启用系统根轨迹编辑器与开环波特图编辑器,如图13.13所示。当然,此时尚未进行系统设计,故不显示根轨迹与开环波特图。图13 SISO设计器· 输入系统数据(Import System Data)在启动SISO设计器之后,需要为所设计的线性系统输入数据,选择SISO设计器中File菜单下的Import命令输入系统数据,此时将打开如图14所示的对话框。图14 系统数据输入对话框使用此对话框可以完成线性系统的数据输入。注意,如果数据来源为Simulink系统模型框图,则必须对其进行线性化处理以获得系统的LTI对象描述。这是因为SISO线性系统中的所有对象(G执行结构、H传感器、F预滤波器、C补偿器)均为LTI对象。另外,用户可以单击控制系统结构右下方的Other按钮以改变控制系统结构。使用SISO默认的控制系统结构,并设置控制系统的执行结构(即控制对象)数据G为mysys_tf,其它的参数H、F、C均使用默认的取值(常数1)。然后单击OK按钮,此时在SISO设计器中会自动绘制此负反馈线性系统的根轨迹图以及系统开环波特图,如图15所示。图15 系统数据输入后的SISO设计界面说明:在系统的根轨迹图中,蓝色×和O表示控制对象G的零极点,而红色表示系统补偿器C的零极点。用户可以在根轨迹编辑器中对系统的根轨迹进行控制与操作:增加补偿器的零极点、移动零极点改变其分布、移动根轨迹图中的紫色方块改变系统增益等等,这些操作均可以改变系统的动态性能。另外,在波特图中除了显示当前补偿器下的系统增益与相位裕度之外,还显示了零点与极点的位置。· 设计与分析系统在完成线性系统数据的输入之后,用户便可以使用诸如零极点配置、根轨迹分析以及系统波特图分析等传统的方法对线性系统进行设计。除了前面介绍的对系统零极点的各种操作(增加、删除以及改变分布)之外,SISO中对线性系统的设计提供了诸多的支持,如:单击补偿器增益及传递函数区域可以弹出补偿器设置对话框,使用此对话框可以设置补偿器C的增益、零点及极点等,如图16所示。图16 补偿器C的增益、零点及极点设置在此系统设计中,仅仅为补偿器增加一个极点,如图17所示。图17 为系统增加极点从系统的根轨迹图与系统波特图可以明显看出增加补偿器极点的影响。当然,任何的设计都不是随心所欲的,都必须按照指定的性能参数以及控制系统本身的规律进行设计,这里仅仅举例说明其设计的方法而已。在系统设计完成后,需要对其做进一步的分析:分析反馈系统的开环和闭环响应,以确保系统是否满足特定的设计要求。用户可以选择SISO设计器中Analysis 菜单下的Other Loop Responses绘制指定的开环响应(或闭环响应)曲线。此时将打开LTI浏览器,用户可在LTI浏览器中对系统的性能如过渡时间、峰值响应、上升时间等等进行分析,如图18所示。图18 使用LTI对系统的设计进行分析验证如果用户需要设计线性离散控制系统,可以选择Tools菜单下的ContinuousDiscrete Conversions选项,以对离散控制系统的采样时间、连续信号的离散化方法等进行设置,如图19所示。图19 离散控制系统设置:采样时间与离散化方法 · SISO设计器与Simulink的集成:系统验证 在使用SISO完成系统的设计之后,在系统实现之前必须对设计好的系统进行仿真分析,以确保系统设计的正确性。如果直接按照系统设计逐步建立系统的Simulink,将是一件很麻烦的工作:庆幸的是,SISO提供了与Simulink集成的方法,用户可以直接使用SISO设计