欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    概率论与数理统计 (2).ppt

    • 资源ID:1688884       资源大小:210.50KB        全文页数:12页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率论与数理统计 (2).ppt

    Probability and statistics,Textbook:probability and statisticsJay L. DevoreHigher Education Press,References,。Introduction to probability and statistics for engineers and scientists Henry L Alder, Edward B Roessler 。Introduction to probability theory and statistical InferenceLarson H J.。概率论与数理统计 浙江大学 盛骤等,。The concepts of chance and uncertainty are as old as civilization itself. People have always had to cope with uncertainty about the weather,their food supply,and other aspects of their environment,and have striven to reduce this uncertainty and its effects. 。Even the idea of gambling has a long history. By about the year 3500 B.C.,games of chance played with bone objects that could be considered precursors of dice were apparently highly developed in Egypt and elsewhere. Cubical dice with markings virtually identical to those on modern dice have been found in Egyptian tombs dating from 2000 B.C. 。We know that gambling with dice has been popular ever since that time and played an important part in the early development of probability theory.,Cha 1. Introduction,It is generally believed that the mathematical theory of probability was started by the French mathematicians Blaise Pascal(1623-1662)and Pierre Fermat(6011665)when they succeeded in deriving exact probabilities for certain gambling problems involving dice. In 1654, the Chevalier de Mere, a gambler,was considering the following problem: A game is played between two persons, and any one who firstly scores three points wins the game. In the game, each of the participants places at stake 32 counters and the winner will take entire stake of the 64 counters. The Chevalier was concerned that if the players left off playing when the game was only partially finished, how should the stakes be divided? Unable to find an answer to this problem, he consulted Blaise Pascal. Pascal solved the problem and communicated this solution to Fermat. Later, Fermat and Pascal, two of the greatest mathematicians of their times,laid a foundation for the theory of probability in their correspondences following Pascals solution.Some of the problems that they solved had been outstanding for about 300 years.,However.numerical probabilities of various dice combinations had been calculated previously bv Girolamo Cardano(15011 576)and Galileo Galilei(15641642). The theory of probability has been developed steadily since the seventeenth century and has been widely applied in diverse fields of study.,Today, probability theory is an important tool in most areas of engineering, science, and management. Many research workers are actively engaged in the discovery and establishment of new applications of probability in fields such as medicine,meteorology,photography from satellites,marketing,earthquake prediction,human behavior, the design of computer systems,finance,genetics, and law.I n many legal proceedings involving antitrust violations or employment discrimination, both sides will present probability and statistical calculations to help support their cases.,Probability can be viewed as a study of the likelihood of a possible outcome to occur in an experiment. An experiment usually means an act such that there is uncertainty about the outcomes after it is performed. A typical example of an experiment is the act of observing the number of dots on the top face of a die upon rolling it. The mathematical counterpart of an experiment is usually called a sample space. The potential outcomes of a probabilistic experiment are called events.,There are many experiments other than gambling games can be seen in our daily life. For example,   l     Will tomorrow be sunny, or clouded, or raining?  l   Will the new teaching technique improve the studentslearning?   l    Will the students in your class become successful engineers? l    Will the next patient entering the doctors clinic have a higher temperature? l    Must I wait for more than 10 minutes for the next bus? The answers to all these questions are uncertain. These are good examples of experiments.,Probability is not only a tool for us to understand experiments with uncertain outcomes, but also a useful tool in solving problems in the areas closely related to our life. when a life insurance company sells a life insurance policy to a person, the insurance company must determine the fair amount of premium this new customer must pay for next year. How much should the fair amount of premium be? Graunt and Halley first applied probability to this problem. When the insurance company determines the premium of a customer, the insurance company must know how likely, or in mathematical terms, what is the probability of , a male in his 40s will die within one year. In other words, the insurance company must know the distribution of the probability of death, known as a mortality table in life insurance. The foundation for mortality determinations was laid by John Graunt and Edmund Halley in the late seventeen century.,When using experimental and observational methods to study a problem, one must collect data by means of observations and/or experiments. These data will inevitably have some kind of uncertainty: they may be affected by the time when the data are collected, the place where the data collected, and the mechanism with which the data are collected. The randomness of the data is also from the fact that we sometimes can only study a portion of the whole population, and which portion are selected to be studied is totally random. After the data are collected, one needs to analyze the data to come up with conclusions. How do we have conclusions with a reasonable level of assurance from such data with certain randomness? How big a portion we single out to study so that the analysis will closely reflect the population?,In order to solve these problems, statisticians have developed many techniques and theories. These techniques and theories constitute the content statistics. Informally speaking, statistics is a branch of mathematics that studies how to effectively collect and use the data with randomness. In order to effectively collect and use data, many mathematical methods and models will be involved. Some of the most commonly used methods and models will be discussed in the chapters that follow.,

    注意事项

    本文(概率论与数理统计 (2).ppt)为本站会员(创****公)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开