精品高一数学课本函数知识点总结高一数学知识点归纳.doc
高一数学课本函数知识点总结_高一数学知识点归纳高一数学课本函数知识点有哪些?下面就是小编给大家带来的高一数学课本函数知识点,希望能帮助到大家!高一数学课本知识点总结11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a 0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解kD(D为f(x)的值域);af(x)恒成立af(x)max,;af(x)恒成立af(x)min;(1)(a 0,a1,b 0,nR+);(2)logaN=(a 0,a1,b 0,b1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a 0,a1,N 6.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。8.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA);9.处理二次函数的问题勿忘数形结合二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;10.依据单调性利用一次函数在区间上的保号性可解决求一类参数的范围问题;高一数学课本知识点总结2定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。范围:倾斜角的取值范围是0° 180°。理解:(1)注意“两个方向”:直线向上的方向、x轴的正方向;(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。意义:直线的倾斜角,体现了直线对x轴正向的倾斜程度;在平面直角坐标系中,每一条直线都有一个确定的倾斜角;倾斜角相同,未必表示同一条直线。公式:k=tank 0时(0°,90°)k 0时(90°,180°)k=0时=0°当=90°时k不存在ax+by+c=0(a0)倾斜角为A,则tanA=-a/b,A=arctan(-a/b)当a0时,倾斜角为90度,即与X轴垂直高一数学课本知识点总结3I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a 0时,开口方向向上,a 0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax2+bx+c(a,b,c为常数,a0)顶点式:y=a(x-h)2+k抛物线的顶点P(h,k)交点式:y=a(x-x?)(x-x?)仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b2)/4ax?,x?=(-b±b2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b2)/4a)当-b/2a=0时,P在y轴上;当=b2-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。当a 0时,抛物线向上开口;当a 0时,抛物线向下开口。|a|越大,则抛物线的开口越小。4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab 0),对称轴在y轴左;当a与b异号时(即ab 0),对称轴在y轴右。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数=b2-4ac 0时,抛物线与x轴有2个交点。=b2-4ac=0时,抛物线与x轴有1个交点。=b2-4ac 0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)高一数学课本函数知识点总结第 5 页 共 5 页