高三数学-统计复习教案(共7页).doc
精选优质文档-倾情为你奉上河北省高碑店市第三中学高三数学 统计复习教案一、简单随机抽样的概念: 【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。(2)简单随机样本数n小于等于样本总体的个数N。(3)简单随机样本是从总体中逐个抽取的。(4)简单随机抽样是一种不放回的抽样。(5)简单随机抽样的每个个体入样的可能性均为n/N。【例题精析】例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?练习:1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A总体是240 B、个体是每一个学生C、样本是40名学生 D、样本容量是402、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )A、总体 B、个体是每一个学生C、总体的一个样本 D、样本容量3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是 4、从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能性是 。 系统抽样班级 姓名 日期 主备人 刘彦军 审核人 董海英一、系统抽样的定义: 【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k.(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。 如:下列抽样中不是系统抽样的是 ( )A、从标有115号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈二、系统抽样的一般步骤。(1)采用随机抽样的方法将总体中的N个个编号。(2)将整体按编号进行分段,确定分段间隔k(kN,Lk).(3)在第一段用简单随机抽样确定起始个体的编号L(LN,Lk)。(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。【说明】从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。三【例题精析】例1、从忆编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A5,10,15,20,25 B、3,13,23,33,43C1,2,3,4,5 D、2,4,6,16,32练习:1、从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为 ( )A99 B、99,5C100 D、100,52、从学号为050的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是 ( )A1,2,3,4,5 B、5,16,27,38,49C2, 4, 6, 8, 10 D、4,13,22,31,403、采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体人样的可能性为 ( )A8 B.8,3C8.5 D.94、某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是 抽样方法。 分层抽样班级 姓名 日期 主备人 刘彦军 审核人 董海英一、分层抽样的定义。 【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。二、分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分。(2)按比例确定每层抽取个体的个数。(3)各层分别按简单随机抽样的方法抽取。(4)综合每层抽样,组成样本。探究:如果采用分层抽样,从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的可能性为( ) A B. C. D.三【例选精析】某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25 B.15,15,15C.10,5,30 D15,10,20练习:1、某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是 ( )A简单随机抽样B系统抽样C分层抽样D先从老人中剔除1人,然后再分层抽样2、某校有500名学生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为 人,A型血应抽取的人数为 人,B型血应抽取的人数为 人,AB型血应抽取的人数为 人。3、某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= 。用样本的频率分布估计总体分布班级 姓名 日期 主备人 刘彦军 审核人 董海英一频率分布的概念:频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为:计算一组数据中最大值与最小值的差,即求极差决定组距与组数将数据分组列频率分布表画频率分布直方图频率分布直方图的特征:从频率分布直方图可以清楚的看出数据分布的总体趋势。从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。二茎叶图茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。2茎叶图的特征:()用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。()茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。三【例题精析】例1:下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位) (1)列出样本频率分布表(2)一画出频率分布直方图;(3)估计身高小于134的人数占总人数的百分比.。90100110120130140150次数o0.0040.0080.0120.0160.0200.0240.028频率/组距0.0320.036例2:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第二小组的频率是多少?样本容量是多少?若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。甲012345乙824719936250329441例3:右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知 ()A甲运动员的成绩好于乙运动员B乙运动员的成绩好于甲运动员C甲、乙两名运动员的成绩没有明显的差异D甲运动员的最低得分为0分练习:1对某电子元件进行寿命追踪调查,情况如下:寿命()100200200300300400400500500600个数2030804030画出频率分布直方图2. 如下表:分 组频数频 率分 组频数频 率10.75,10.85)311.25,11.35)2010.85,10.95)911.35, 11.45)710.95,11.05)1311.45, 11.55)411.05,11.15)1611.55, 11.65)211.15,11.25)26合 计100完成上面的频率分布表根据上表,画出频率分布直方图根据上表,估计数据落在10.95,11.35)范围内的概率约为多少?用样本的数字特征估计总体的数字特征班级 姓名 日期 主备人 刘彦军 审核人 董海英一、众数中位数平均数二、标准差、方差标准差,方差三【例题精析】例1:写出下列四组样本数据的数字特征(1),(2),(3),(),专心-专注-专业