二次函数图像与性质总结精编版.docx
精品名师归纳总结二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:yax2 的性质:a 的符号开口方向顶点坐标对称轴a0向上0 ,0y 轴性质x0 时, y 随 x 的增大而增大。 x0时, y 随x 的增大而减小。x0 时, y 有最小值 0 a0向下0 ,0y 轴x0 时, y 随 x 的增大而减小。 x0时, y 随x 的增大而增大。x0 时, y 有最大值 0 a 的肯定值越大,抛物线的开口越小。2.yax2c 的性质:上加下减。a 的符号开口方向顶点坐标对称轴a0向上0 ,cy 轴性质x0 时, y 随 x 的增大而增大。 x0时, y 随x 的增大而减小。x0 时, y 有最小值 c a0向下0 ,cy 轴x0 时, y 随 x 的增大而减小。 x0时, y 随x 的增大而增大。x0 时, y 有最大值 c 3.ya xh2的性质:左加右减。a 的符号开口方向顶点坐标对称轴a0向上h ,0X=h性质xh 时, y 随 x 的增大而增大。 xh 时, y随 x 的增大而减小。xh 时, y 有最小值 0 a0向下h ,0X=hxh 时, y 随 x 的增大而减小。 xh 时, y随 x 的增大而增大。xh 时, y 有最大值 0 4.ya xh2k 的性质:a 的符号开口方向顶点坐标对称轴a0向上h ,kX=h性质xh 时, y 随 x 的增大而增大。 xh 时, y随 x 的增大而减小。xh 时, y 有最小值 k a0向下h ,kX=hxh 时, y 随 x 的增大而减小。 xh 时, y随 x 的增大而增大。xh 时, y 有最大值 k 二、二次函数图象的平移1. 平移步骤:可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2方法一: 将抛物线解析式转化成顶点式2ya xhk ,确定其顶点坐标h ,k。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 保持抛物线yax 的外形不变,将其顶点平移到h ,k处,详细平移方法如下:可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结y=ax 2向上k>0【或向下 k<0】平移 |k |个单位y=ax 2+k可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结向右h>0【或左 h<0】平移|k|个单位y=ax-h2向右h>0 【或左 h<0 】平移 |k|个单位向上k>0 【或下 k<0 】平移|k|个单位向上k>0 【或下 k<0】平移 |k|个单位向右h>0【或左 h<0】平移 |k|个单位y=ax-h2+k可编辑资料 - - - 欢迎下载精品名师归纳总结2. 平移规律在原有函数的基础上 “h 值正右移,负左移。k 值正上移,负下移”概括成八个字“左加右减,上加下减”方法二:可编辑资料 - - - 欢迎下载精品名师归纳总结 yax2bxc 沿 y 轴平移 :向上(下)平移 m 个单位, yax2bxc 变成可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结yax 2bxcm (或 yax 2bxcm )可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 yax2bxc 沿轴平移:向左(右)平移m 个单位, yax 2bxc 变成可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2ya xmb xmc (或 yaxm 2b xmc )可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结三、二次函数2ya xhk 与 yaxbxc 的比较可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结从解析式上看,22ya xhk 与 yax2bxc是两种不同的表达形式,后者通过配可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结方可以得到前者,即2yaxb 2a4acb2 4a,其中 hb4acb2,k2a4a可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结四、二次函数yax2bxc 图象的画法可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结五点绘图法:利用配方法将二次函数2yaxbxc 化为顶点式2ya xhk ,确定可编辑资料 - - - 欢迎下载精品名师归纳总结其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称的描点画图. 一般我们可编辑资料 - - - 欢迎下载精品名师归纳总结选取的五点为:顶点、与y 轴的交点 0 ,c、以及 0 ,c关于对称轴对称的点2h ,c、可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结与 x 轴的交点x1 ,0 ,x2 ,0(如与 x 轴没有交点,就取两组关于对称轴对称的点).可编辑资料 - - - 欢迎下载精品名师归纳总结2画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与 y 轴的交点 .可编辑资料 - - - 欢迎下载精品名师归纳总结五、二次函数yaxbxc 的性质可编辑资料 - - - 欢迎下载精品名师归纳总结2bb4acb可编辑资料 - - - 欢迎下载精品名师归纳总结1. 当 a0 时,抛物线开口向上,对称轴为x,顶点坐标为2a,2a4a可编辑资料 - - - 欢迎下载精品名师归纳总结当 xb 2a时, y 随 x 的增大而减小。 当 x2b 时, y 随 x 的增大而增大。 当 xb 2a2a可编辑资料 - - - 欢迎下载精品名师归纳总结时, y 有最小值4acb4a可编辑资料 - - - 欢迎下载精品名师归纳总结2bb4acb可编辑资料 - - - 欢迎下载精品名师归纳总结2. 当 a0 时,抛物线开口向下,对称轴为x,顶点坐标为2a,当2a4a可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结xb时, y 随 x 的增大而增大。当 x 2a2b 时, y 随 x 的增大而减小。当 x 2ab 时, y2a可编辑资料 - - - 欢迎下载精品名师归纳总结有最大值4acb4a可编辑资料 - - - 欢迎下载精品名师归纳总结2六、二次函数解析式的表示方法可编辑资料 - - - 欢迎下载精品名师归纳总结1. 一般式:yaxbxc ( a , b , c 为常数, a0 )。可编辑资料 - - - 欢迎下载精品名师归纳总结2. 顶点式:ya xh2k ( a , h , k 为常数, a0 )。可编辑资料 - - - 欢迎下载精品名师归纳总结3. 两根式:ya xx1 xx2 ( a0 , x1 ,x2 是抛物线与 x 轴两交点的横坐标) .可编辑资料 - - - 欢迎下载精品名师归纳总结2留意:任何二次函数的解析式都可以化成一般式或顶点式,但并非全部的二次函数都可以写可编辑资料 - - - 欢迎下载精品名师归纳总结成交点式,只有抛物线与x 轴有交点,即b4 ac0 时,抛物线的解析式才可以用交可编辑资料 - - - 欢迎下载精品名师归纳总结点式表示二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数 a可编辑资料 - - - 欢迎下载精品名师归纳总结二次函数yax2bxc 中, a 作为二次项系数,明显a0 可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 当 a 当 a0 时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大。0 时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大可编辑资料 - - - 欢迎下载精品名师归纳总结总结起来, a 打算了抛物线开口的大小和方向,a 的正负打算开口方向,a 的大小决定开口的大小2. 一次项系数 b在二次项系数 a 确定的前提下,b 打算了抛物线的对称轴 在 a0 的前提下,可编辑资料 - - - 欢迎下载精品名师归纳总结当 b0 时, 当 b0 时,当 b0 时,b0 ,即抛物线的对称轴在y 轴左侧。2ab0 ,即抛物线的对称轴就是y 轴。2ab0 ,即抛物线对称轴在y 轴的右侧2a可编辑资料 - - - 欢迎下载精品名师归纳总结 在 a0 的前提下,结论刚好与上述相反,即可编辑资料 - - - 欢迎下载精品名师归纳总结当 b0 时, 当 b0 时,当 b0 时,b0 ,即抛物线的对称轴在y 轴右侧。2ab0 ,即抛物线的对称轴就是y 轴。2ab0 ,即抛物线对称轴在y 轴的左侧2a可编辑资料 - - - 欢迎下载精品名师归纳总结总结起来,在 a 确定的前提下,b 打算了抛物线对称轴的位置可编辑资料 - - - 欢迎下载精品名师归纳总结ab 的符号的判定:对称轴x概括的说就是“左同右异” 总结:3. 常数项 cb 在 y 轴左边就 ab 2a0 ,在 y 轴的右侧就 ab0 ,可编辑资料 - - - 欢迎下载精品名师归纳总结 当 c 当 c 当 c0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与y 轴交点的纵坐标为正。0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为 0 。0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与y 轴交点的纵坐标为负可编辑资料 - - - 欢迎下载精品名师归纳总结总结起来, c 打算了抛物线与 y 轴交点的位置总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯独确定的 二次函数解析式的确定:依据已知条件确定二次函数解析式,通常利用待定系数法 用待定系数法求二次函数的解析式必需依据题目的特点,挑选适当的形式,才能使解题简便一般来说,有如下几种情形:1. 已知抛物线上三点的坐标,一般选用一般式。2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式。3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式。4. 已知抛物线上纵坐标相同的两点,常选用顶点式八、二次函数图象的对称二次函数图象的对称一般有四种情形,可以用一般式或顶点式表达1. 关于 x 轴对称可编辑资料 - - - 欢迎下载精品名师归纳总结2ya xb x关c于 x 轴对称后,得到的解析式是2yaxbxc 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2yaxhk 关于 x 轴对称后,得到的解析式是2yaxhk 。可编辑资料 - - - 欢迎下载精品名师归纳总结22. 关于 y 轴对称可编辑资料 - - - 欢迎下载精品名师归纳总结2ya xb x关c于 y 轴对称后,得到的解析式是yaxbxc 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2yaxhk 关于 y 轴对称后,得到的解析式是2ya xhk 。可编辑资料 - - - 欢迎下载精品名师归纳总结3. 关于原点对称可编辑资料 - - - 欢迎下载精品名师归纳总结2ya xb x关c于原点对称后,得到的解析式是2yaxbxc 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2yaxh关k 于原点对称后,得到的解析式是2ya xhk 。可编辑资料 - - - 欢迎下载精品名师归纳总结4. 关于顶点对称(即:抛物线绕顶点旋转180°)22可编辑资料 - - - 欢迎下载精品名师归纳总结ya xb x关c于顶点对称后,得到的解析式是2yaxbxcb。2a可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2ya xhk 关于顶点对称后,得到的解析式是2ya xhk 可编辑资料 - - - 欢迎下载