欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    二次函数总结及相关典型题目.docx

    • 资源ID:17132987       资源大小:456.94KB        全文页数:13页
    • 资源格式: DOCX        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    二次函数总结及相关典型题目.docx

    精品名师归纳总结二次函数学问点总结及相关典型题目第一部分 基础学问可编辑资料 - - - 欢迎下载精品名师归纳总结1. 定义: 一般的, 假如 yax 2bxca, b, c 是常数, a0 ,那么 y 叫做 x 的二次函数 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2. 二次函数 yax 2 的性质可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2(1) 抛物线 yax 2 的顶点是坐标原点,对称轴是y 轴.可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(2) 函数 yax 的图像与 a 的符号关系 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结当 a当 a0 时抛物线开口向上顶点为其最低点。0时抛物线开口向下顶点为其最高点 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(3) 顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为yax 2(a0).可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结3. 二次函数yax 2bxc 的图像是对称轴平行于(包括重合)y 轴的抛物线 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结4. 二 次 函 数 yax 2bxc用 配 方 法 可 化 成 : ya xh 2k 的 形 式 , 其 中可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结hb , k 2a4acb 2.4a可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结25. 二 次 函 数 由 特 殊 到 一 般 , 可 分 为 以 下 几 种 形 式 : yax 2 。 yax 2k 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 ya xh。 ya xh 2k 。 yax 2bxc .可编辑资料 - - - 欢迎下载精品名师归纳总结6. 抛物线的三要素:开口方向、对称轴、顶点.可编辑资料 - - - 欢迎下载精品名师归纳总结 a 的符号打算抛物线的开口方向:当a0 时,开口向上。当 a0 时,开口向下。可编辑资料 - - - 欢迎下载精品名师归纳总结a 相等,抛物线的开口大小、外形相同.平行于 y 轴(或重合)的直线记作xh . 特殊的, y 轴记作直线 x0 .7. 顶点打算抛物线的位置. 几个不同的二次函数,假如二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.可编辑资料 - - - 欢迎下载精品名师归纳总结8. 求抛物线的顶点、对称轴的方法2b4acb 2b4acb2可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)公式法: yax2bxca x2a,顶点是(4a,),2a4a可编辑资料 - - - 欢迎下载精品名师归纳总结对称轴是直线xb .2a可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)配方法: 运用配方的方法,将抛物线的解析式化为ya xh 2k 的形式, 得到顶可编辑资料 - - - 欢迎下载精品名师归纳总结点为 h , k ,对称轴是直线 xh .( 3)运用抛物线的对称性: 由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.可编辑资料 - - - 欢迎下载精品名师归纳总结9. 抛物线 yax 2bxc 中,a,b,c 的作用可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 1) a 打算开口方向及开口大小,这与yax 2 中的 a 完全一样 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 2) b 和 a 共同打算抛物线对称轴的位置. 由于抛物线 ybbax 2bxc 的对称轴是直线可编辑资料 - - - 欢迎下载精品名师归纳总结x,故: b 2a0 时,对称轴为y 轴。0 (即 a 、 b 同号)时,对称轴a可编辑资料 - - - 欢迎下载精品名师归纳总结在 y 轴左侧。 ba0 (即 a 、 b 异号)时,对称轴在y 轴右侧 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 3) c 的大小打算抛物线yax 2bxc 与 y 轴交点的位置 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结当 x0时, yc ,抛物线 yax2bxc 与 y 轴有且只有一个交点(0, c ):可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 c0 ,抛物线经过原点 ; c0 , 与 y 轴交于正半轴。c0 , 与 y 轴交于负可编辑资料 - - - 欢迎下载精品名师归纳总结半轴 .以上三点中,当结论和条件互换时,仍成立. 如抛物线的对称轴在y 轴右侧,就b0 .a10. 几种特殊的二次函数的图像特点如下:函数解析式开口方向对称轴顶点坐标可编辑资料 - - - 欢迎下载精品名师归纳总结yax 2yax 2kx0 ( y 轴)( 0,0 )x0 ( y 轴)0,k 可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结ya xh 2ya xh 2当 a0 时xhk开口向上xh h ,0 h , k 可编辑资料 - - - 欢迎下载精品名师归纳总结yax 2bxc当 a0时bxb4 acb 2可编辑资料 - - - 欢迎下载精品名师归纳总结开口向下2a,2a4a可编辑资料 - - - 欢迎下载精品名师归纳总结11. 用待定系数法求二次函数的解析式可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)一般式: yax 2bxc . 已知图像上三点或三对x 、 y 的值,通常挑选一般式.可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)顶点式: ya xh 2k . 已知图像的顶点或对称轴,通常挑选顶点式.可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 3)交点式:已知图像与 x 轴的交点坐标x1、x2 ,通常选用交点式: ya xx1xx2.可编辑资料 - - - 欢迎下载精品名师归纳总结12. 直线与抛物线的交点可编辑资料 - - - 欢迎下载精品名师归纳总结( 1) y 轴与抛物线yax 2bxc得交点为 0,c .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 2 ) 与 y 轴 平 行 的 直 线 xh 与 抛 物 线 yax 2bxc有 且 只 有 一 个 交 点可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 h ,ah 2bhc .可编辑资料 - - - 欢迎下载精品名师归纳总结( 3)抛物线与 x 轴的交点可编辑资料 - - - 欢迎下载精品名师归纳总结二次函数 yax 2bxc 的图像与 x 轴的两个交点的横坐标x 、 x ,是对应一元可编辑资料 - - - 欢迎下载精品名师归纳总结12可编辑资料 - - - 欢迎下载精品名师归纳总结二次方程ax 2bxc0 的两个实数根 . 抛物线与 x 轴的交点情形可以由对应的一可编辑资料 - - - 欢迎下载精品名师归纳总结元二次方程的根的判别式判定:有两个交点0抛物线与 x 轴相交。有一个交点(顶点在x 轴上)0抛物线与 x 轴相切。没有交点0抛物线与 x 轴相离 .( 4)平行于 x 轴的直线与抛物线的交点同( 3)一样可能有 0 个交点、 1 个交点、 2 个交点 . 当有 2 个交点时,两交点的纵坐可编辑资料 - - - 欢迎下载精品名师归纳总结标相等,设纵坐标为k ,就横坐标是ax 2bxck 的两个实数根 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 5)一次函数 ykxn k0 的图像 l 与二次函数yax2bxc a0 的图像 G 的可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结交点,由方程组ykxnyax 2bx的解的数目来确定:方程组有两组不同的解时c可编辑资料 - - - 欢迎下载精品名师归纳总结l 与 G 有两个交点 ; 方程组只有一组解时l 与G 只有一个交点。 方程组无解时l 与 G 没有交点 .可编辑资料 - - - 欢迎下载精品名师归纳总结( 6 )抛物线与x 轴两交点之间的距离:如抛物线yax2bxc与 x 轴两交点为可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结A x1,0 , Bx2,0,由于x1、x2 是方程ax2bxc0 的两个根,故可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结x1x2b , xxc12a a22可编辑资料 - - - 欢迎下载精品名师归纳总结ABx1x22x1x22x1x24x1x2b4caab 4acaa可编辑资料 - - - 欢迎下载精品名师归纳总结其次部分 典型习题考点 1: 函数的三种形式2. 抛物线 y x 2x2 的顶点坐标是()A. ( 2, 2)B.( 1, 2)C.( 1, 3)D.( 1, 3)2. 抛物线 y=2x-3 2 的顶点在 A. 第一象限B. 其次象限C. x 轴上D. y 轴上可编辑资料 - - - 欢迎下载精品名师归纳总结3. 抛物线y ( x2)21 的顶点坐标是可编辑资料 - - - 欢迎下载精品名师归纳总结A ( 2, 1)B (-2, -1)C(-2, 1)D ( 2, -1)可编辑资料 - - - 欢迎下载精品名师归纳总结4. 如图,抛物线yax2bxc 与 x 轴交于点 1,0 ,对称轴为可编辑资料 - - - 欢迎下载精品名师归纳总结x1 ,就以下结论中正确选项A. a0可编辑资料 - - - 欢迎下载精品名师归纳总结B. 当C. cx 1时, y 随 x 的增大而增大0可编辑资料 - - - 欢迎下载精品名师归纳总结D. x3是一元二次方程2ax2bxc0 的一个根可编辑资料 - - - 欢迎下载精品名师归纳总结5. 抛物线 y=x +bx+c,经过 A-1 ,0,B3,0两点,就这条抛物线的解析式为 .可编辑资料 - - - 欢迎下载精品名师归纳总结6. 已知抛物线y x24x5.可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)直接写出它与 x 轴、 y 轴的交点的坐标。可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)用配方法将yx24 x5 化成ya xh2k 的形式可编辑资料 - - - 欢迎下载精品名师归纳总结7. 已知二次函数 y=x2+bx+c 中,函数 y 与自变量 x 的部分对应值如下表:x-101234y830-103可编辑资料 - - - 欢迎下载精品名师归纳总结(1) 求该二次函数的解析式。(2) 当 x 为何值时, y 有最小值,最小值是多少?(3) 如 A( m, y1), B m+2, y2 两点都在该函数的图象上,运算当 m 取何值时, y1y2 .可编辑资料 - - - 欢迎下载精品名师归纳总结8. 抛物线 y=ax2+bx+c 上部分点的横坐标x,纵坐标 y 的对应值如下表:x 2 1012y0 4408( 1)依据上表填空:抛物线与 x 轴的交点坐标是和。抛物线经过点- 3,。 在对称轴右侧, y 随 x 增大而。2( 2)试确定抛物线 y=ax +bx+c 的解析式 .解 : ( 1) 抛物线与 x 轴的交点坐标是和。 抛物线经过点- 3,。 在对称轴右侧, y 随 x 增大而.( 2)考点 2.a 、b、c 符号问题可编辑资料 - - - 欢迎下载精品名师归纳总结1、已知二次函数yax 2bxc 的图象如下列图,就以下结论正确选项()可编辑资料 - - - 欢迎下载精品名师归纳总结 ab 0, c0 ab 0, c 0 ab 0, c 0 ab 0, c 0y1O1x第 1,2 题图第 3 题图可编辑资料 - - - 欢迎下载精品名师归纳总结2. 二次函数y ax 2 bx c 的图象如上图所示,就以下结论正确选项()可编辑资料 - - - 欢迎下载精品名师归纳总结A a0, b 0, c 0Ba 0, b0, c 0C a0, b 0, c 0Da 0, b 0, c 0可编辑资料 - - - 欢迎下载精品名师归纳总结3 已知二次函数 y2 bx c 的图象如上图所示,就以下结论中正确选项可编辑资料 - - - 欢迎下载精品名师归纳总结axA a>0Bc 0可编辑资料 - - - 欢迎下载精品名师归纳总结C b 24ac0D a b c>0可编辑资料 - - - 欢迎下载精品名师归纳总结4. 已知抛物线 y=ax 2+bx+c 的图象如右图所示,就以下结论正确选项()A a+b+c> 0B b> -2aC a-b+c> 0D c< 05. 抛物线 y=ax2+bx+c 中, b 4a,它的图象如右图,有以下结论:2 c>0。 a+b+c> 0a-b+c> 0 b -4ac<0 abc<0 。 其 中 正 确 的 为()ABCD可编辑资料 - - - 欢迎下载精品名师归纳总结26. 已知二次函数 y ax bx c,假如 a>b>c,且 a b c0,就它的图象可能是图所示的可编辑资料 - - - 欢迎下载精品名师归纳总结yO1x A2yO1xByO1 x2 CyO1 xD可编辑资料 - - - 欢迎下载精品名师归纳总结7. 二次函数 yax bxc 的图象如下列图, 那么 abc,b 4ac, 2a b,a b c 四个代数式中,值为正数的有A.4 个B.3 个C.2 个D.1 个考点 3:二次函数的增减性1. 二次函数 y=3x 2 6x+5 ,当 x>1 时, y 随 x 的增大而。当 x<1 时, y 随 x 的增大而。当 x=1 时,函数有最值是。2. 已知函数 y=4x 2 mx+5 ,当 x> 2 时,y 随 x 的增大而增大。 当 x< 2 时,y 随 x 的增大而削减。就当x 1 时,y 的值为。3. 已知二次函数 y=x2 m+1x+1 ,当 x 1 时,y 随 x 的增大而增大, 就 m的取值范畴是.可编辑资料 - - - 欢迎下载精品名师归纳总结14. 已知二次函数 y=x 25的图象上有三点 Ax ,y,Bx,y ,Cx,y 且 3<x<x <x ,可编辑资料 - - - 欢迎下载精品名师归纳总结2+3x+ 2112233123可编辑资料 - - - 欢迎下载精品名师归纳总结就 y1,y 2,y 3 的大小关系为.考点:4 :图象平移对称问题可编辑资料 - - - 欢迎下载精品名师归纳总结1. 将抛物线yx2 先向下平移 1 个单位长度后,再向右平移1 个单位长度,所得抛物线的可编辑资料 - - - 欢迎下载精品名师归纳总结解析式是可编辑资料 - - - 欢迎下载精品名师归纳总结2. 将抛物线yx2 向左平移 2 个单位,再向上平移1 个单位后,得到的抛物线的解析式可编辑资料 - - - 欢迎下载精品名师归纳总结y=x为可编辑资料 - - - 欢迎下载精品名师归纳总结3. 将抛物线2 平移得到抛物线 y=x2+3, 就以下平移过程正确选项可编辑资料 - - - 欢迎下载精品名师归纳总结A. 向上平移 3 个单位B. 向下平移 3 个单位C. 向左平移 3 个单位D. 向右平移 3 个单位4. 抛物线 y=2x 2 4x 关于 y 轴对称的抛物线的关系式为。5. 抛物线 y=ax 2+bx+c 关于 x 轴对称的抛物线为y=2x 2 4x+3,就 a=b=c=可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结6. 已知抛物线ykx2k2 x2 (其中 k0 )可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)求该抛物线与 x 轴的交点坐标及顶点坐标可以用含 k 的代数式表示 。可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)如记该抛物线的顶点坐标为1( 3)将该抛物线先向右平移2P m, n ,直接写出n 的最小值。个单位长度, 再向上平移 1 个单位长度, 随着 k 的变化,k可编辑资料 - - - 欢迎下载精品名师归纳总结平移后的抛物线的顶点都在某个新函数的图象上,求这个新函数的解析式(不要求写自变量的取值范畴) 考点 5:三个二次问题:可编辑资料 - - - 欢迎下载精品名师归纳总结1. 已知二次函数y kx22k 1 x1 与 x 轴交点的横坐标为x 、 x ( x x),就对于下可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结1212列结论:当x 2 时, y 1。当xx2 时, y 0。方程kx22 k1 x10 有可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结两个不相等的实数根x1、 x2 。x11 , x21 。1 4k 2x2 x1,其中全部正k可编辑资料 - - - 欢迎下载精品名师归纳总结确的结论是(只需填写序号) 可编辑资料 - - - 欢迎下载精品名师归纳总结2. 已知二次函数 y1 x22x ,( 1)它的最大值为。( 2)如存在实数 m,n 使得当自变可编辑资料 - - - 欢迎下载精品名师归纳总结量 x 的取值范畴是 m x n 时,函数值 y 的取值范畴恰好是3m y3n,就 m=,n=可编辑资料 - - - 欢迎下载精品名师归纳总结3. 已知二次函数y ax22 的图象经过点( 1, 1)求这个二次函数的解析式,并判定该可编辑资料 - - - 欢迎下载精品名师归纳总结函数图象与 x 轴的交点的个数可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结4. 已知函数yx2bxc (x )0,满意当 x =1 时, y1 ,可编辑资料 - - - 欢迎下载精品名师归纳总结且当 x = 0 与 x =4 时的函数值相等可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)求函数yx2bxc ( x )0 的解析式并画出它的可编辑资料 - - - 欢迎下载精品名师归纳总结图象(不要求列表) 。( 2)如 f x 表示自变量 x 相对应的函数值,且可编辑资料 - - - 欢迎下载精品名师归纳总结f xx2bxc x0,又已知关于 x 的方程可编辑资料 - - - 欢迎下载精品名师归纳总结2 x0,f xxk 有三个不相等的实数根,请利用图象直接写出实数 k 的取值范畴考点 6:二次函数的应用1某商店销售一种进价为20 元/双的手套,经调查发觉,该种手套每天的销售量w双与销售单价 x元满意 w2x80 20 x 40,设销售这种手套每天的利润为y(元) .(1)求 y 与 x 之间的函数关系式。( 2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少? 解:2已知二次函数 ym x2 +3-m x- 3 m>0 的图象与 x 轴交于点 x1, 0 和x2, 0, 且 x1<x2.11( 1)求 x2 的值 ;可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)求代数式m x 2m x 23m x16m x19 的值 .可编辑资料 - - - 欢迎下载精品名师归纳总结考点 7:二次函数与一次函数1. 如一次函数y=ax+b 的图象经过其次、三、四象限,就二次函数y=ax2+bx 的图象只可能是2. 当 b<0 是一次函数 y=ax+b 与二次函数 y=ax 2+bx+c 在同一坐标系内的图象可能是 ()可编辑资料 - - - 欢迎下载精品名师归纳总结3. 已知直线 y2 xb b0 与 x 轴交于点A,与 y 轴交于点 B。一抛物线的解析式为可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结yx 2b10 xc .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)如该抛物线过点B,且它的顶点 P 在直线y2 xb 上,试确定这条抛物线的解析可编辑资料 - - - 欢迎下载精品名师归纳总结式。( 2)过点 B 作直线 BCAB 交 x 轴交于点 C,如抛物线的对称轴恰好过C 点,试确定直线y2 xb 的解析式 .考点 8:代数几何综合问题1. 如图,已知ABC 中, BC=8, BC上的高 h4 , D 为 BC上一点, EF / / BC ,交 AB于点E,交 AC于点 F( EF不过 A、B),设 E 到 BC的距离为 x ,就 DEF 的面积 y 关于 x 的函数的图象大致为()可编辑资料 - - - 欢迎下载精品名师归纳总结y4444可编辑资料 - - - 欢迎下载精品名师归纳总结O24xO24O24O24可编辑资料 - - - 欢迎下载精品名师归纳总结ABCD可编辑资料 - - - 欢迎下载精品名师归纳总结2. 抛物线 yx22x3 与 x 轴分别交于 A、B 两点,就 AB的长为可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结3. 如下列图,已知二次函数 y=ax2+bx+ca 0的图象的顶点 P 的横可编辑资料 - - - 欢迎下载精品名师归纳总结坐标是 4,图象交 x 轴于点 Am,0和点 B,且 m>4,那么 AB 的长是A. 4+mB. mC. 2m-8D. 8-2m4. 某大桥拱形可以近似看作抛物线的一部分在大桥截面1 11000 的比例图上,跨度 AB 5 cm,拱高 OC 0. 9 cm,线段 DE表示大桥拱内桥长, DE AB,如图( 1)在比例图上,以直线 AB为 x 轴,抛物线的对称轴为y 轴,以 1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2)( 1)求出图( 2)上以这一部分抛物线为图象的函数解析式,写出函数定义域。可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)假如 DE与 AB的距离 OM 0. 45 cm,求卢浦大桥拱内实际桥长 (备用数据:21.4 ,可编辑资料 - - - 欢迎下载精品名师归纳总结运算结果精确到 1 米)可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结25. 已知抛物线 yax 43a x 34 与 x 轴交于 A、 B 两点,与 y 轴交于点 C是否存在可编辑资料 - - - 欢迎下载精品名师归纳总结实数 a,使得 ABC为直角三角形如存在,恳求出a 的值。如不存在,请说明理由可编辑资料 - - - 欢迎下载精品名师归纳总结6. 如图 ,已知抛物线经过坐标原点O 及 A 23, 0 ,其顶点为 B m, 3, C 是 AB 中点, 点 E可编辑资料 - - - 欢迎下载精品名师归纳总结是直线 OC 上的一个动点点 E 与点 O 不重合 ,点 D 在 y 轴上 , 且 EO=ED .( 1)求此抛物线及直线OC 的解析式。( 2)当点 E 运动到抛物线上时, 求 BD 的长。可编辑资料 - - - 欢迎下载精品名师归纳总结33( 3)连接 AD , 当点 E 运动到何处时, AED 的面积为4坐标 .解:,请直接写出此时 E 点的y可编辑资料 - - - 欢迎下载精品名师归纳总结BCAOx可编辑资料 - - - 欢迎下载精品名师归纳总结7. 已知:在如图1 所示的平面直角坐标系xOy中, A, C 两点的坐标分别为A2,3 ,Cn, 3 (其中

    注意事项

    本文(二次函数总结及相关典型题目.docx)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开