五级数学上册知识点归纳总结 3.docx
精品名师归纳总结五年级数学上册复习学问点归纳总结第一单元 :小数乘法一、小数乘法运算方法:按整数乘法的法就算出积。 再看因数中一共有几位小数, 就从积的右边起数出几位点上小数点。留意事项:(1) 运算结果中,小数部分末尾的0 要去掉,把小数化简。(2) 小数加减法小数点对齐,小数乘法末尾对齐。(3) 运算整数因数末尾有 0 的小数乘法时,要把整数数位中不是0 的最右侧数字与小数因数末尾对齐。如:二、小数乘法规律:1、积不变性质:一个因数乘一个数,另一个除以同一个数(0 除外), 积不变。2、一个因数不变,另一个数乘几,积就乘几。一个因数不变,另一个因数除以几,积就除以几。3、一个数( 0 除外)乘大于 1 的数,积比原先的数大。 如: 0.23 ×1.04 0.233.5×7.3 7.34、一个数( 0 除外)乘小于 1 的数,积比原先的数小。如: 3.2 ×0.88 3.20.13×4.76 4.76三、积的近似数(1) 四舍五入(2) 进一法(3) 去尾法。最终两种方法多用于解决问题,可以直接用约等于写出答案。提示点:运算钱数,一般保留两位小数,表示精确到分。四、小数四就运算次序、简便运算定律跟整数是一模一样的。方法 1、看(观看算式) 2、想(摸索能否简便运算) 3、做(确定定律按运算律简便运算。)加法交换律:a+b=b+a加法结合律 :a+b+c=a+b+c乘法交换律:a×b=b×a乘法结合律: a ×b ×c=a×b × c乘法安排律: a+b ×c=a×c+b× c 或 a-b×c=a×c-b ×c可编辑资料 - - - 欢迎下载精品名师归纳总结减法性质:a-b-c=a-b+ca-b-c=a-c-b除法性质:a÷b÷c=a÷b ×ca÷b÷c=a÷c÷ b去括号:a+b-c=a+b-ca-b-c=a-b+ca b÷c=ab ÷c a÷b ÷c=a ÷b×c乘法安排律(提取式)拓展应用1.35 ×12-1.35 ×295.5÷1.6-15.5 ÷ 1.6乘法安排律(添项)99×25.6+25.63.5×8+3.5 × 3-3.5两数之和两数之差两数之积4.5 × 10299× 2.65.6×125减法 1减法 2减法 352.8-6.5-3.55.28-0.89-1.287.63-( 1.9+2.63 )连除 1连除 2连除 33200÷2.5 ÷ 0.4370÷2.5 ÷3.7210÷( 12.5 ×2.1 )同级运算中(只有加减或者只有乘除时) ,后面的数可以带符号进行交换。2.56-0.58+0.445.88+1.62-0.882.5÷ 0.2 × 0.4290× 2.5 ÷0.29其次单元:位置一、作用 :数对可以表示物体的位置。二、表示位置的方法 :(列、行)三、意义: 数对( 3,5)表示(第三列,第五行) 。四、特别情形:同列不同行 ,如:(2,4)和( 2,7)都在第 2 列上。同行不同列 ,如:(3,6)和( 1,6)都在第 6 行上五、图形平移变化规律:可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)图形向左平移,行数不变,列数减去平移的格数。 图形向右平移,行数不变,列数加上平移的格数。2图形向上平移,列数不变,行数加上平移的格数。 图形向下平移,列数不变,行数减去平移的格数。练习:1、请你在右面的方格图里描出以下各点 , 并把这几个点顺次连接成一个封闭图形 , 你能发觉什么 . A(2,1 ) B (7,1 ) C( 4,4 ) D( 9,4 )第三单元:小数除法一、 小数除以整数的运算方法:小数除以整数, 按整数除法的方法去除, 商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。假如有余数,要添0 再除。二、 除数是小数的除法的运算方法:先将除数和被除数扩大相同的倍数(把小数点向右移动相同的位数),使除数变成整数,再按“除数是整数的小数除法”的法就进行运算。留意: 1、向右移动小数点时,假如被除数的位数不够,在被除数的末尾用0补足2、除法过程中,要移一次,除以一次,不够除以,商0 再移。三、除法中的变化规律:商不变性质:被除数和除数同时乘或除以同一个数(0 除外),商不变。除数不变,被除数乘或除以几,商随着乘或除以几。可编辑资料 - - - 欢迎下载精品名师归纳总结被除数不变,除数乘或除以几,商反之除以或乘几。( 1)、一个数( 0 除外)除以大于 0 的数,商比原先的数小。例如: 4.25 ÷1.01 4.25(2)、一个数( 0 除外)除以大于 0 且小于 1 的数,商比原先的数大。例如: 0.99 ÷0.99 0.99四、商的近似数保留到哪一位, 肯定要除到那一位的下一位, 然后用“四舍五入” 取近似数。没有要求时,除不尽的一般保留两位小数。五、各个小数名称之间的关系图练习:1 、 一 个 两 位 小 数 保 留 一 位 小 数 后 是 1. 5 , 这 个 两 位 小 数 最 大 是 , 最 小 是 .2 、 把 3. 8 米 长 的 铁 丝 平 均 截 成 5 段 , 每 段 长 () 米 , 仍 剩 () 米3 、 两 个 数 相 除 的 商 是 0. 3 9 , 如 果 被 除 数 扩 大 1 0 倍 , 除 数 也 扩 大 1 0倍 , 那 么 商 是 .第四单元:可能性1、可能性:无论在什么情形下都会发生的大事,是“肯定”会发生的大事。 在任何情形下都不会发生的大事,是“不行能”发生的大事。在某种情形下会发生,而在其他情形下不会发生的大事,是“可能”会发生的大事。2、可能性的大小:假如显现该大事的情形较多, 可能性较大。 假如显现该大事的情形较少, 可能性较小。第五单元:简易方程可编辑资料 - - - 欢迎下载精品名师归纳总结一、 方程的意义:含有未知数的等式称为方程。(必需是等式,必需有未知数, 两者缺一不行)请以你的懂得画出韦恩图:二、解方程:(由于有检验、方程不会错)求方程的解的过程叫做解方程。方法一: 天平平稳原懂得方程。等式性质一:方程两边同时加上或减去同一个数,左右两边仍旧相等。等式性质二:方程两边同时乘或除以同一个不为0 的数,左右两边仍旧相等。方法二 :利用四就运算的运算关系加法:和 =加数+加数一个加数 =和- 另一个加数例如: x+120=17658+x=90减法:差 =被减数 - 减数被减数=差+减数减数=被减数- 差例如: x 3.3=8.973.2 x=52.5乘法:积 =因数×因数一个因数 =积÷另一个因数例如: x×4.5=906.2x=124除法:商=被除数÷除数被除数=商×除数除数=被除数÷商例如: x÷78=10.58.8÷x=4.4三、简写:1、在含有字母的式子里,字母中间的乘号可以记作“· ”,也可以省略不写。2留意点:a×a 可以写作 a· a 或 a2, a2 读作 a 的平方2a 表示 a+a或 2×a1a=a这里的“ 1”我们不写四、列方程解决问题方法步骤:设列解验答1、行程问题:路程=速度×时间速度=路程÷时间时间=路程÷速度可编辑资料 - - - 欢迎下载精品名师归纳总结练习: 1、甲乙两人从相距 50 千米的的方相向而行,甲每小时行6 千米,乙每小时行 4 千米,当两人之间的距离是 10 千米时,他们走了多少小时?两列对开的火车在途中相遇,甲车上的乘客看到乙车从旁边开过去,共用 了 6 秒钟,已知甲车每小时行 45 千米, 乙车每小时行 36 千米, 就乙车全长多少米?2、价格问题:总价 =单价×数量单价=总价÷数量数量=总价÷单价例如:小敏买了两套丛书,两套丛书的本数相同。科学丛书每本2.5 元,创造家丛书每本 3 元,共花了 22 元。每套丛书有多少本?3、工程问题:工作总量 =工作效率×工作时间工作效率 =工作总量÷工作时间工作时间 =工作总量÷工作效率(1)、农田里二台播种机6 小时可以播种 2.4 公顷,照这样运算3.56 小时 3台播种机可以播种多少公顷?( 2)李村修一条水渠,方案每天修 80 米,而实际只用 25 天完成,比原方案提前 5 天,实际每天修多少米?(用算术法和方程解)4、倍数问题:像这类的应用题在几倍前都会有一个“的” “比”字,假如“的” “比”字前得这个量就是问题,我们就可以依据数量关系设这个量为 X. 列出方程。1、某钢厂有职工 1800 人,其中男职工是女职工的 2.6 倍,这个钢厂男、女职工各有多少人?( 2)学校图书馆购进故事书 720 本书, 比科技书的 3 倍少 48 本,购进科技书多少本?可编辑资料 - - - 欢迎下载精品名师归纳总结第六单元:多边形的面积1、各个图形面积公式推导图留意点: 1、长方形框架拉成平行四边形,周长不变,面积变小。2、运算圆木、钢管等的根数: 顶层根数 +底层根数 ×层数÷ 23、常见计量单位及进率( 大化小,乘进率。小化大,除以进率 )长度单位:面积单位:质量单位:时间单位:4、组合图形的面积: 【方法:分割法或割补法或剪移(旋转)拼,转化成已学的简洁图形,通过加、减进行运算。 】练习:可编辑资料 - - - 欢迎下载精品名师归纳总结1、平行四边形的面积是 48 平方分米,底是 12 分米,高是().2. 一个平行四边形的面积是9 平方分米,底扩大 4 倍,高不变,它的面积是()平方分米。3、一个梯形的上底是 3 米,下底 2 米,高 2 米,这个梯形的面积是() 平方米4、一个三角形的面积是 4.5 平方分米,底是 5 分米,高是()分米。6.、运算以下组合图形的面积5、求以下图形阴影部分的面积。单位:厘米第七单元数学广角 - 植树问题1、 方法:化繁为简,画图,列表,再总结应用2、公式:间隔数总长÷间距。总长间距×间隔数。可编辑资料 - - - 欢迎下载精品名师归纳总结(1) )、两端要栽:棵数间隔数 1。(类似问题有:竖电线杆,走楼梯,敲钟声,两端插旗.)(2) )、两端不栽:棵数间隔数 1。(类似问题有:锯木头,剪铁丝 .)(3) )、一端栽一端不栽:棵数间隔数。(类似问题有:各种封闭图形)提示:对于植树问题,仍是得多画图懂得:详细问题详细分析。3、常见的其他问题锯木问题:段数次数 1。 次数段数 1,总时间每次时间×次数方阵问题:最外层的数目是:边长× 44 或者是(边长 1)× 4。 单边边长 = 最外层数目 +4 ÷4整个方阵的总数目是:边长×边长过桥问题:总长=车身长 +车间距×车间隔数 +桥(路长)速度=总长÷时间出租车计费(信件邮资、洗照片)等问题。运算时分成两部分。 1 标准部分。已经知道总价的,不再运算,不知道总价需运算。( 2)超出部分。超出数量×超出单价。最终相加。练习:1、一张桌子坐 8 人,两张桌子并起来坐 12 人,三张桌子并起来坐 16 人照这样运算,六张桌子并成一排可以坐多少人?如 果一共有 40 人,需要多少张桌子并成一排才能坐下?可编辑资料 - - - 欢迎下载