中考总复习专题3一次函数反比例函数的图像性质与应用师用.doc
【精品文档】如有侵权,请联系网站删除,仅供学习与交流中考总复习专题3一次函数反比例函数的图像性质与应用师用.精品文档.中考专题总复习3-一次函数、反比例函数的图像、性质与应用重点正、反比例函数,一次函数的图象和性质。一、平面直角坐标系1各象限内点的坐标的特点 2坐标轴上点的坐标的特点3关于坐标轴、原点对称的点的坐标的特点 4坐标平面内点与有序实数对的对应关系二、函数 1 函数中的三个概念:常量,自变量,因变量。2表示方法:解析法;列表法;图象法。3确定自变量取值范围的原则:使代数式有意义;使实际问题有意义。4画函数图象:列表;描点;连线。三、几种特殊函数(定义图象性质)1 正比例函数定义:y=kx(k0) 或y/x=k。图象:直线(过原点)性质:k>0,k<0,2 一次函数定义:y=kx+b(k0)图象:直线过点(0,b)与y轴的交点和(-b/k,0)与x轴的交点。xoy(k>0,b>0)xoy(k<0,b>0)xoy(k>0,b<0)xoy(k<0,b<0)性质:k>0,k<0,图象的四种情况:4.反比例函数定义:三种形式:或xy=k(k0)。图象:双曲线(两支)用描点法画出。性质:k>0时,图象位于,y随x;k<0时,图象位于,y随x;两支曲线无限接近于坐标轴但永远不能到达坐标轴。四、重要解题方法1 用待定系数法求解析式(列方程组求解)2利用图象一次(正比例)函数、反比例函数、一填空题1(2010年上海)一辆汽车在行驶过程中,路程 y(千米)与时间 x(小时)之间的函数关系如图3所示 当时 0x1,y关于x的函数解析式为 y = 60 x,那么当 1x2时,y关于x的函数解析式为_.图3【答案】y=100x402(2010安徽蚌埠二中)已知点(1,3)在函数的图像上。正方形的边在轴上,点是对角线的中点,函数的图像又经过、两点,则点的横坐标为_。【答案】3(10湖南益阳)如图6,反比例函数的图象位于第一、三象限,其中第一象限内的图象经过点A(1,2),请在第三象限内的图象上找一个你喜欢的点P,你选择的P点坐标为【答案】答案不唯一,、满足且即可4(2010江苏盐城)如图,A、B是双曲线 上的点, A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若SAOC=6则k= yxOBCA(第18题)【答案】45(2010 福建德化)如图,直线与双曲线()交于点将直线向下平移个6单位后,与双曲线()交于点,与轴交于点C,则C点的坐标为_;若,则 OxyABC【答案】(,126(2010湖南衡阳)如图,已知双曲线经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C若OBC的面积为3,则k_【答案】27(2010湖北武汉)如图,直线y与y轴交于点A,与双曲线y在第一象限交于点B,C两点,且ABAC4,则k 全品中考网答案: 8(2010湖北荆门)函数y=k(x1)的图象向左平移一个单位后与反比例函数y=的图象的交点为A、B,若点A的坐标为(1,2),则点B的坐标为_【答案】(-1,-2)9(2010 四川成都)已知是正整数,是反比例函数图象上的一列点,其中记,若(是非零常数),则A1·A2··An的值是_(用含和的代数式表示)【答案】10都在双曲线上,且,;分别过点A、B向x轴、y轴作垂线段,垂足分别为C、D、E、F,AC与BF相交于G点,四边形FOCG的面积为2,五边形AEODB的面积为14,那么双曲线的解析式为 第15题图G【答案】11(2010陕西西安)已知都在反比例函数的图象上。若,则的值为 。【答案】-1212(2010 四川泸州)在反比例函数的图象上,有一系列点、,若的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2. 现分别过点、作轴与轴的垂线段,构成若干个矩形如图8所示,将图中阴影部分的面积从左到右依次记为、,则_,+_.(用n的代数式表示)【答案】5,13(2010 内蒙古包头)如图,已知一次函数的图象与反比例函数的图象在第一象限相交于点,与轴相交于点轴于点,的面积为1,则的长为 (保留根号)yOxACB【答案】 14(2010 福建泉州南安)如图,已知点A在双曲线y=上,且OA=4,过A作ACx轴于C,OA的垂直平分线交OC于B(1)则AOC的面积= ,(2)ABC的周长为 【答案】(1),(2)15(2010 四川自贡)两个反比例子函数y,y在第一象限内的图象如图所示,点P1,P2,P3,P2010在反比例函数y图象上,它们的横坐标分别是x1,x2,x3,x2010,纵坐标分别是1,3,5,共2010个连续奇数,过点P1,P2,P3,P2010分别作y轴的平行线,与y的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),Q2010(x2010,y2010),则y2010_。【答案】2009.516(2010 湖北咸宁)如图,一次函数的图象与轴,轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作轴,轴的垂线,垂足为E,F,连接CF,DE有下列四个结论:CEF与DEF的面积相等;AOBFOE;DCECDF; 其中正确的结论是 (把你认为正确结论的序号都填上)yxDCABOFE(第16题)【答案】17(2010广西南宁)如图7所示,点、在轴上,且,分别过点、作轴的平行线,与分比例函数的图像分别 交于点、,分别过点、作轴的平行线,分别与 轴交于点、,连接、,那么图中阴影部分的面积之和为 【答案】18(2010贵州遵义)如图,在第一象限内,点P(2,3),M(,2)是双曲线y=(k0)上的两点,PA轴于点B,MB轴于点B,PA与OM交于点C,则OAC的面积为.【答案】19(2010福建南平)函数y= 和y=在第一象限内的图像如图,点P是y= 的图像上一动点,PCx轴于点C,交y=的图像于点B.给出如下结论:ODB与OCA的面积相等;PA与PB始终相等;四边形PAOB的面积大小不会发生变化;CA= AP.其中所有正确结论的序号是_.第18题DOCAPByx【答案】:20(2010广西河池)如图3,RtABC在第一象限,AB=AC=2,点A在直线上,其中点A的横坐标为1,且AB轴,AC轴,若双曲线与有交点,则k的取值范围是 .y1xOABC图3【答案】二解答题:1(2010江苏苏州) (本题满分8分)如图,四边形OABC是面积为4的正方形,函数(x0)的图象经过点B (1)求k的值; (2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC、MABC设线段MC、NA分别与函数(x0)的图象交于点E、F,求线段EF所在直线的解析式【答案】2(2010广东广州,23,12分)已知反比例函数y(m为常数)的图象经过点A(1,6)(1)求m的值;(2)如图9,过点A作直线AC与函数y的图象交于点B,与x轴交于点C,且AB2BC,求点C的坐标【答案】解:(1) 图像过点A(1,6), (2)分别过点A、B作x轴的垂线,垂足分别为点D、E,由题意得,AD6,OD1,易知,ADBE,CBECAD, AB2BC,BE2即点B的纵坐标为2当y2时,x3,易知:直线AB为y2x8,C(4,0)3(2010甘肃兰州)(本题满分9分)如图,P1是反比例函数在第一象限图像上的一点,点A1 的坐标为(2,0) (1)当点P1的横坐标逐渐增大时,P1O A1的面积 将如何变化? (2)若P1O A1与P2 A1 A2均为等边三角形,求此反比例函数的解析式及A2点的坐标【答案】(1)解:(1)P1OA1的面积将逐渐减小 2分(2)作P1COA1,垂足为C,因为P1O A1为等边三角形,所以OC=1,P1C=,所以P1 3分代入,得k=,所以反比例函数的解析式为 4分作P2DA1 A2,垂足为D、设A1D=a,则OD=2+a,P2D=a,所以P2 6分代入,得,化简得解的:a=-1± 7分a0 8分所以点A2的坐标为,0 9分当时,.点为(,). 7分4(2010浙江杭州) (本小题满分6分) 给出下列命题:命题1. 点(1,1)是直线y = x与双曲线y = 的一个交点;命题2. 点(2,4)是直线y = 2x与双曲线y = 的一个交点;命题3. 点(3,9)是直线y = 3x与双曲线y = 的一个交点;(1)请观察上面命题,猜想出命题(是正整数);(2)证明你猜想的命题n是正确的.【答案】(1)命题n: 点(n , n2) 是直线y = nx与双曲线y =的一个交点(是正整数). (2)把 代入y = nx,左边= n2,右边= n·n = n2,左边 =右边, 点(n,n2)在直线上. 同理可证:点(n,n2)在双曲线上,点(n,n2)是直线y = nx与双曲线y = 的一个交点,命题正确. 5(2010浙江金华)(本题10分)已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.yPQMNOx12-1-2-3-3-2-1123(第23题图)(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标; M1的坐标是 (2) 请你通过改变P点坐标,对直线M1 M的解析式ykxb进行探究可得 k , 若点P的坐标为(m,0)时,则b ;(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标【答案】解:(1)如图;M1 的坐标为(1,2) M1PQMNOy123-1-2-3-3-2-1123Q1N1(2), (3)由(2)知,直线M1 M的解析式为x 则(,)满足 解得 , M1,M的坐标分别为(,),(,)6(2010 山东济南)如图,已知直线与双曲线交于A,B两点,且点A的横坐标为4. (1)求k的值;(2)若双曲线上一点C的纵坐标为8,求AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标【答案】(1)点A横坐标为4 , 当 x = 4时,y = 2 点A的坐标为(4,2 ) 2 点A是直线与双曲线(k>0)的交点, k = 4×2 = 8 .3 (2)解法一: 点C在双曲线上,当y = 8时,x = 1 点C的坐标为(1,8).4 过点A、C分别做x轴、y轴的垂线,垂足为M、N,得矩形DMON S矩形ONDM= 32 , SONC = 4 , SCDA = 9, SOAM = 4 SAOC= S矩形ONDMSONCSCDASOAM = 32494 = 15 .6 (3) 反比例函数图象是关于原点O的中心对称图形 , OP=OQ,OA=OB 四边形APBQ是平行四边形 SPOA = S平行四边形APBQ =×24 = 6设点P的横坐标为m(m > 0且),得P(m,) .7过点P、A分别做轴的垂线,垂足为E、F, 点P、A在双曲线上,SPOE = SAOF = 4若0m4, SPOE + S梯形PEFA = SPOA + SAOF, S梯形PEFA = SPOA = 6 解得m= 2,m= 8(舍去) P(2,4) 8 若 m 4, SAOF+ S梯形AFEP = SAOP + SPOE, S梯形PEFA = SPOA = 6 解得m= 8,m =2 (舍去) P(8,1) 点P的坐标是P(2,4)或P(8,1).97(2010 河北)如图13,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2)过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;xMNyDABCEO图13(3)若反比例函数(x0)的图象与MNB有公共点,请直接写出m的取值范围【答案】解:(1)设直线DE的解析式为,点D ,E的坐标为(0,3)、(6,0), 解得 点M在AB边上,B(4,2),而四边形OABC是矩形, 点M的纵坐标为2又 点M在直线上, 2 = x = 2 M(2,2)(2)(x0)经过点M(2,2), .又 点N在BC边上,B(4,2),点N的横坐标为4 点N在直线上, N(4,1) 当时,y = 1,点N在函数 的图象上(3)4 m 88(2010 山东省德州) 探究 (1) 在图1中,已知线段AB,CD,其中点分别为E,F第22题图1OxyDBAC若A (-1,0), B (3,0),则E点坐标为_;若C (-2,2), D (-2,-1),则F点坐标为_;(2)在图2中,已知线段AB的端点坐标为A(a,b) ,B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程OxyDB第22题图2A归纳 无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d), AB中点为D(x,y) 时,x=_,y=_(不必证明)运用 在图2中,一次函数与反比例函数xyy=y=x-2ABO第22题图3的图象交点为A,B求出交点A,B的坐标;若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标【答案】解: 探究 (1)(1,0);(-2,);(2)过点A,D,B三点分别作x轴的垂线,垂足分别为ADBOxyDBA, ,则D为AB中点,由平行线分线段成比例定理得O=xyy=y=x-2ABOOP即D点的横坐标是同理可得D点的纵坐标是AB中点D的坐标为(,)归纳:,运用 由题意得解得或即交点的坐标为A(-1,-3),B(3,1) 以AB为对角线时,由上面的结论知AB中点M的坐标为(1,-1) 平行四边形对角线互相平分,OM=OP,即M为OP的中点P点坐标为(2,-2) 同理可得分别以OA,OB为对角线时,点P坐标分别为(4,4) ,(-4,-4) 满足条件的点P有三个,坐标分别是(2,-2) ,(4,4) ,(-4,-4) 9(2010湖北荆州)已知:关于x 的一元二次方程的两根满足,双曲线(x0)经过RtOAB斜边OB的中点D,与直角边AB交于C(如图),求【答案】解:有两根 即 由得: 当时, 解得 ,不合题意,舍去 当时, 解得: 符合题意 双曲线的解析式为: 过D作DEOA于E, 则 DEOA,BAOADEAB ODEOBA 10(2010北京)已知反比例函数y= 的图像经过点A(,1)(1)试确定此反比例函数的解析式(2)点O是坐标原点,将线段OA绕点O顺时针旋转30°得到线段OB,判断点B是否在反比例函数的图像上,并说明理由(3)已知点P(m,m+6)也在此反比例函数的图像上(其中m 0),过p点作x轴的的垂线,交x轴于点M,若线段PM上存在一点Q,使得OQM的面积是,设Q点的纵坐标为n,求n22n+q的值【答案】解:(1)由题意德 1=解得 k= 反比例函数的解析式为y= (2)过点A作x轴的垂线交x轴于点C, 全品中考网 在RtAOC中,OC=,AC=1可得OA=2,AOC=30° 由题意,AOC=30°,OB=OA=2, BOC=60°过点B做x轴的垂线交x轴于点D, 在RtBOD中,可得, BD=, OD=1 点B坐标(1,) 将x=1代入y= 中,得y=点B(1,)在反比例函数y= 的图像上(3)由y= 得xy= 点P(m,m+6)在反比例函数的y= 的图像上,m0 m(m+6 )= PQx轴Q点的坐标(m,n) OQM的面积为OM.QM= m0 m.n=1 11(2010河南)如图,直线y=x+6与反比例函数y=等(x>0)的图象交于A(1,6),B(a,3)两点.(1)求、的值;(2)直接写出x +6一 >0时的取值范围; (3)如图,等腰梯形OBCD中,BCOD,OB=CD,OD边在x轴上,过点C作CEOD于E,CE和反比例函数的图象交于点P.当梯形OBCD的面积为l2时,请判断PC和PE的大小关系,并说明理由.【答案】(1)由题意知 k2 = 1×6 = 6 反比例函数的解析式为 y = . 又B(a,3)在y = 的图象上,a = 2 B(2,3). 直线y = k1x + b 过A(1,6),B(2,3)两点, (2)x 的取值范围为1< x < 2. (3)当S梯形OBCD = 12时,PC= PE 设点P的坐标为(m,n),BCOD,CEOD,BO = CD,B(2,3). C(m,3),CE = 3,BC = m 2,OD = m +2. 当S梯形OBCD = ,即12 = m = 4 .又mn = 6 ,n = .即PE = CE. PC = PE. 12(2010江苏徐州)如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C (1)求反比例函数和一次函数的关系式; (2)求AOC的面积; (3)求不等式kx+b-<0的解集(直接写出答案)【答案】13(2010 四川绵阳)如图,已知正比例函数y = ax(a0)的图象与反比例函致(k0)的图象的一个交点为A(1,2k2),另个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E(1)写出反比例函数和正比例函数的解析式;(2)试计算COE的面积是ODE面积的多少倍EDBAxyOC【答案】(1)由图知k0,a0 点A(1,2k2)在图象上, 2k2 =k,即 k2k2 = 0,解得 k = 2(k =1舍去),得反比例函数为此时A(1,2),代人y = ax,解得a = 2, 正比例函数为y = 2x(2)过点B作BFx轴于F A(1,2)与B关于原点对称, B(1,2),即OF = 1,BF = 2,得 OB =由图,易知 RtOBFRtOCD, OB : OC = OF : OD,而OD = OB2 =2, OC = OB · ODOF = 2.5由 RtCOERtODE得 ,所以COE的面积是ODE面积的5倍14(2010广西梧州)如图,在平面直角坐标系中,点A(10,0),OBA=90°,BCOA,OB=8,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB向点B运动,现点E、F同时出发,当F点到达B点时,E、F两点同时停止运动。(1)求梯形OABC的高BG的长。(2)连接EF并延长交OA于点D,当E点运动到几秒时,四边形ABED是等腰梯形。(3)动点E、F是否会同时在某个反比例函数的图像上?如果会,请直接写出这时动点E、F运动的时间t的值;如果不会,请说明理由。HDABCOyFGEx【答案】(1)在RtABO中,OB=8,OA=10根据勾股定理得AB=6SABO= OB·AB= OA·BG,BG=48(2)RtABG中,AB=6,BG= 48,根据勾股定理得AG=36,若四边形ABED是等腰梯形,则OD=10-36-36-t=28-t,OF=2t,BF=8-2t,BCOA,EBFDOF,即:,得到: t=。(3)动点E、F会同时在某个反比例函数的图像上。t=。理由:因为AG=36,EC=10-36-t=64-t,所以点E的坐标为(64-t,48)作FHAO于点H,得OHFOBA,FH=×2t=t,OH=×2t=t,如果E、F同时在某个反比例函数的图像上,则E、F两点的横纵坐标乘积相等,即:48(64-t)=tt,得2t2 +5t-32=0,解得t=,或t=(舍去),15(2010广西柳州)如图13,过点P(4,3)作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线(k2)于E、F两点(1)点E的坐标是_,点F的坐标是_;(均用含k的式子表示)(2)判断EF与AB的位置关系,并证明你的结论;(3)记,S是否有最小值?若有,求出其最小值;若没有,请说明理由xABOEFPy图13xABOEFPPMN【答案】解:(1)E(-4,-),F(,3) 3分(说明:只写对一个点的坐标给2分,写对两个点的坐标给3分) (2)(证法一)结论:EFAB 4分证明: P(-4,3) E(-4,-),F(,3), 即得:PE=3+,PF=+4 5分 APB=EPF PABPEF 6分 PAB=PEF 7分 EFAB 4分(证法二)结论:EFAB 4分证明: P(-4,3) E(-4,-),F(,3),即得:PE=3+,PF=+4 5分在RtPAB中,tanPAB=在RtPEF中,tanPEF= tanPAB= tanPEF PAB=PEF 6分 EFAB 7分(3)(方法一) S有最小值 8分 9分 由(2)知, S= 10分 = 11分 又 k2,此时S的值随k值增大而增大, 当k=2时,S的最小值是12分(方法二) S有最小值 8分 分别过点E、F作PF、PE的平行线,交点为P 由(2)知,P 四边形PEP为矩形, SPEF= SPEF S=SPEF - SOEF = SPEF - SOEF = SOME +S矩形OMPN+ SONF 9分= 10分=+k = 11分又 k2,此时S的值随k值增大而增大, 当k=2时,S最小= S的最小值是 12分16(2010年福建省泉州)我们容易发现:反比例函数的图象是一个中心对称图形.你 可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将轴所在的直线绕着原点逆时针旋转度角后的图形.若它与反比例函数的图象分别交于第一、三象限的点、,已知点、.(1)直接判断并填写:不论取何值,四边形的形状一定是 ; (2)当点为时,四边形是矩形,试求、和有值;观察猜想:对中的值,能使四边形为矩形的点共有几个?(不必说理)(3)试探究:四边形能不能是菱形?若能, 直接写出B点的坐标, 若不能, 说明理由.【答案】解:(1)平行四边形(3分)(2)点在的图象上,(4分)过作,则在中,=30°(5分)又点B、D是正比例函数与反比例函数图象的交点,点B、D关于原点O成中心对称 (6分)OB=OD=四边形为矩形,且(7分); (8分)能使四边形为矩形的点B共有2个;(9分)(3)四边形不能是菱形.(10分)法一:点、的坐标分别为、四边形的对角线在轴上.又点、分别是正比例函数与反比例函数在第一、三象限的交点.对角线与不可能垂直.四边形不能是菱形法二:若四边形ABCD为菱形,则对角线ACBD,且AC与BD互相平分,因为点A、C的坐标分别为(-m,0)、(m,0)所以点A、C关于原点O对称,且AC在x轴上. (11分)所以BD应在y轴上,这与“点B、D分别在第一、三象限”矛盾,所以四边形ABCD不可能为菱形. (12分)17(2010内蒙呼和浩特)在平面直角坐标系中,函数y(x0,m是常数)的图像经过点A(1,4)、点B(a,b),其中a1.过点A作x中的垂线,垂足为C,过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连结AD、DC、CB与AB.(1)求m的值;(2)求证:DCAB;(3)当ADBC时,求直线AB的函数解析式. 【答案】解:(1)点A(1,4)在函数y的图像上,4,得m4.2分(2)点B(a,b)在函数y的图像上,ab4.又ACx轴于C,BDy轴于D交AC于M,ACBD于MM(1,b),D(0,b),C(1,0)tanBAC,tanDCM4分tanBAC tanDCM,所以锐角BACDCM,DCAB6分说明:利用两边对应成比例且夹角相等的三角形相似,易证ABMCDM,易得BACDCM.评分标准为证出相似得到4分,证出平行得到6分.(3)设直线AB的解析式为ykxbABCD,ADBC,四边形ABCD是平行四边形或等腰梯形. 四边形ABCD是平行四边形时,AC与BD互相平分,又ACBD,B(2,2),解得直线AB的解析式为:y2x6.8分当四边形ABCD是等腰梯形时,BD与AC相等且垂直,ACBD4,B(4,1)同理可求直线AB的解析式为yx5.10分