欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    冲刺2011 2010年中考数学压轴题及解答.doc

    • 资源ID:17191965       资源大小:7.79MB        全文页数:92页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    冲刺2011 2010年中考数学压轴题及解答.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流冲刺2011 2010年中考数学压轴题及解答.精品文档.2010年中考数学压轴题及解答2113、(2010年山东省滨州市)25如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过x轴上A、B两点 (1)求A、B、C三点的坐标; (2)求过A、B、C三点的抛物线的解析式; (3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位?【解答】25.(1)A、B、C的坐标分别为,(2)(3)设抛物线的解析式为,代入,可得,平移后的抛物线的解析式为。平移了个单位。第22题图1OxyDBAC114、(2010年山东省德州市)22 (本题满分10分) 探究 (1) 在图1中,已知线段AB,CD,其中点分别为E,F若A (-1,0), B (3,0),则E点坐标为_;若C (-2,2), D (-2,-1),则F点坐标为_;(2)在图2中,已知线段AB的端点坐标为A(a,b) ,B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的OxyDB第22题图2A代数式表示),并给出求解过程归纳 无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d), AB中点为D(x,y) 时,x=_,y=_(不必证明)xyy=y=x-2ABO第22题图3运用 在图2中,一次函数与反比例函数的图象交点为A,B求出交点A,B的坐标;若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标【解答】22(本题满分10分)解: 探究 (1)(1,0);(-2,);-2分(2)过点A,D,B三点分别作x轴的垂线,垂足分别为ADBOxyDBA, ,则-3分D为AB中点,由平行线分线段成比例定理得O=xyy=y=x-2ABOOP即D点的横坐标是-4分同理可得D点的纵坐标是AB中点D的坐标为(,)-5分归纳:,-6分运用 由题意得解得或即交点的坐标为A(-1,-3),B(3,1) -8分以AB为对角线时,由上面的结论知AB中点M的坐标为(1,-1) 平行四边形对角线互相平分,OM=OP,即M为OP的中点P点坐标为(2,-2) -9分同理可得分别以OA,OB为对角线时,点P坐标分别为(4,4) ,(-4,-4) 满足条件的点P有三个,坐标分别是(2,-2) ,(4,4) ,(-4,-4) -10分115、(2010年山东省德州市)23 (本题满分11分) xyOABCPQMN第23题图已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3)(1)求此函数的解析式及图象的对称轴;(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动设运动时间为t秒当t为何值时,四边形ABPQ为等腰梯形;设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值【解答】23(本题满分11分)xyOABCPQDEGMNF解:(1)二次函数的图象经过点C(0,-3),c =-3将点A(3,0),B(2,-3)代入得解得:a=1,b=-2-2分配方得:,所以对称轴为x=1-3分(2) 由题意可知:BP= OQ=0.1t点B,点C的纵坐标相等,BCOA过点B,点P作BDOA,PEOA,垂足分别为D,E要使四边形ABPQ为等腰梯形,只需PQ=AB即QE=AD=1又QE=OEOQ=(2-0.1t)-0.1t=2-0.2t,2-0.2t=1解得t=5即t=5秒时,四边形ABPQ为等腰梯形-6分设对称轴与BC,x轴的交点分别为F,G对称轴x=1是线段BC的垂直平分线,BF=CF=OG=1又BP=OQ,PF=QG又PMF=QMG,MFPMGQMF=MG点M为FG的中点 -8分S=,由=S=-10分又BC=2,OA=3,点P运动到点C时停止运动,需要20秒0<t20 当t=20秒时,面积S有最小值3-11分xOA(第23题图)By116、(2010年山东省东营市)23 (本题满分10分) 如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点B(0,-5)(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得ABP的周长最小请求出点P的坐标【解答】23 (本题满分10分)xOA(第23题图)ByCPx=2解:(1)根据题意,得2分解得 3分二次函数的表达式为4分(2)令y=0,得二次函数的图象与x轴的另一个交点坐标C(5, 0).5分由于P是对称轴上一点,连结AB,由于,要使ABP的周长最小,只要最小.6分由于点A与点C关于对称轴对称,连结BC交对称轴于点P,则= BP+PC =BC,根据两点之间,线段最短,可得的最小值为BC.因而BC与对称轴的交点P就是所求的点.8分设直线BC的解析式为,根据题意,可得解得所以直线BC的解析式为.9分因此直线BC与对称轴的交点坐标是方程组的解,解得所求的点P的坐标为(2,-3).10分117、(2010年山东省东营市)24 (本题满分10分) 如图,在锐角三角形ABC中,ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与,重合),且保持DEBC,以DE为边,在点的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE = x,ABC与正方形DEFG重叠部分的面积为,试求关于的函数关系式,写出x的取值范围,并求出y的最大值.B(第24题图)ADEFGCB(备用图(1)ACB(备用图(2)AC【解答】B(第24题图(1))ADEFGCMN24 (本题满分10分) 解:(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.SABC=48,BC=12,AM=8.DEBC,ADEABC, 1分而AN=AMMN=AMDE,. 2分解之得.B(第24题图(2)ADEFGC当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8.3分(2)分两种情况:当正方形DEFG在ABC的内部时,如图(2),ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,DE=x,此时x的范围是4.84分当正方形DEFG的一部分在ABC的外部时,如图(2),设DG与BC交于点Q,EF与BC交于点P,MB(第24题图(3))ADEFGCNPQABC的高AM交DE于N,DE=x,DEBC,ADEABC, 5分即,而AN=AMMN=AMEP, ,解得.6分所以, 即.7分由题意,x>4.8,x<12,所以.因此ABC与正方形DEFG重叠部分的面积为(0< x4.8) 8分当4.8时,ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04当时,因为,所以当时,ABC与正方形DEFG重叠部分的面积的最大值为.因为24>23.04,所以ABC与正方形DEFG重叠部分的面积的最大值为24. 10分 118、(2010年山东省济南市)23(本小题满分9分)已知:ABC是任意三角形如图1所示,点M、P、N分别是边AB、BC、CA的中点求证:MPN=A如图2所示,点M、N分别在边AB、AC上,且,点P1、P2是边BC的三等分点,你认为MP1N+MP2N=A是否正确?请说明你的理由如图3所示,点M、N分别在边AB、AC上,且,点P1、P2、P2009是边BC的2010等分点,则MP1N+MP2N+MP2009N=_(请直接将该小问的答案写在横线上)【解答】23. 证明:点M、P、N分别是AB、BC、CA的中点, 线段MP、PN是ABC的中位线,MPAN,PNAM,1分 四边形AMPN是平行四边形,2分 MPN=A. 3分MP1N+MP2N=A正确. 4分如图所示,连接MN, 5分,A=A,AMNABC,AMN=B, MNBC,MN=BC, 6分点P1、P2是边BC的三等分点,MN与BP1平行且相等,MN与P1P2平行且相等,MN与P2C平行且相等,四边形MBP1N、MP1P2N、MP2CN都是平行四边形,MBNP1,MP1NP2,MP2AC,7分MP1N=1,MP2N=2,BMP2=A,MP1N+MP2N=1+2=BMP2=A.8分A. 9分119、(2010年山东省济南市)24(本小题满分9分)如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为,抛物线的对称轴l与直线BD交于点C、与x轴交于点E求A、B、C三个点的坐标点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN求证:AN=BM在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.【解答】24.解:令,解得:, A(1,0),B(3,0)2分抛物线的对称轴为直线x=1,将x=1代入,得y=2,C(1,2). 3分在RtACE中,tanCAE=,CAE=60º,由抛物线的对称性可知l是线段AB的垂直平分线,AC=BC,ABC为等边三角形, 4分AB= BC =AC = 4,ABC=ACB= 60º,又AM=AP,BN=BP,BN = CM, ABNBCM, AN=BM. 5分四边形AMNB的面积有最小值 6分设AP=m,四边形AMNB的面积为S,由可知AB= BC= 4,BN = CM=BP,SABC=×42=,CM=BN= BP=4m,CN=m, 过M作MFBC,垂足为F,则MF=MCsin60º=,SCMN=,7分S=SABCSCMN= 8分m=2时,S取得最小值3. 9分120、(2010年山东省济宁市)22(8分)(第22题)数学课上,李老师出示了这样一道题目:如图,正方形的边长为,为边延长线上的一点,为的中点,的垂直平分线交边于,交边的延长线于.当时,与的比值是多少?经过思考,小明展示了一种正确的解题思路:过作直线平行于交,分别于,如图,则可得:,因为,所以.可求出和的值,进而可求得与的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.【解答】22(1)解:过作直线平行于交,分别于点, 则,.,.2分. 4分(第22题)(2)证明:作交于点,5分则,.7分.8分121、(2010年山东省济宁市)23(10分)(第23题)如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧). 已知点坐标为(,).(1)求此抛物线的解析式;(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与有怎样的位置关系,并给出证明;(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.【解答】23(1)解:设抛物线为.抛物线经过点(0,3),.抛物线为.3分 (2) 答:与相交. 4分证明:当时,. 为(2,0),为(6,0).设与相切于点,连接,则.(第23题)又,.6分抛物线的对称轴为,点到的距离为2.抛物线的对称轴与相交. 7分(3) 解:如图,过点作平行于轴的直线交于点.可求出的解析式为.8分设点的坐标为(,),则点的坐标为(,). 当时,的面积最大为. 此时,点的坐标为(3,). 10分122、(2010年山东省莱芜市)23.(本题满分10分)在 ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图,试判断四边形EGFH的形状,并说明理由;(2)如图,当EFGH时,四边形EGFH的形状是 ;(3)如图,在(2)的条件下,若AC=BD,四边形EGFH的形状是 ;(4)如图,在(3)的条件下,若ACBD,试判断四边形EGFH的形状,并说明理由.HGFEODCBA图HGFEODCBA图ABCDOEFGH图ABCDOEFGH图(第23题图)【解答】23.(本小题满分10分)解:(1)四边形EGFH是平行四边形 1分证明: ABCD的对角线AC、BD交于点O点O是 ABCD的对称中心EO=FO,GO=HO四边形EGFH是平行四边形 4分(2)菱形 5分(3)菱形 6分(4)四边形EGFH是正方形 7分证明:AC=BD, ABCD是矩形 又ACBD, ABCD是菱形 ABCD是正方形,BOC=90°,GBO=FCO=45°OB=OCEFGH ,GOF=90°BOG=COFBOGCOFOG=OF,GH=EF 9分由(1)知四边形EGFH是平行四边形,又EFGH,EF=GH.四边形EGFH是正方形 10分(第24题图)xyOACBDEF123、(2010年山东省莱芜市)24.(本题满分12分)如图,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线交于点D,作D与x轴相切,D交轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得PGA的面积被直线AC分为12两部分.【解答】24. (本小题满分12分)解:(1)抛物线经过点, 解得.抛物线的解析式为:. 3分(2)易知抛物线的对称轴是.把x=4代入y=2x得y=8,点D的坐标为(4,8)D与x轴相切,D的半径为8 4分连结DE、DF,作DMy轴,垂足为点M在RtMFD中,FD=8,MD=4cosMDF=MDF=60°,EDF=120° 6分劣弧EF的长为: 7分(3)设直线AC的解析式为y=kx+b. 直线AC经过点.,解得.直线AC的解析式为:. 8分设点,PG交直线AC于N,则点N坐标为.xyOACBDEFPGNM若PNGN=12,则PGGN=32,PG=GN.即=.解得:m1=3, m2=2(舍去).当m=3时,=.此时点P的坐标为. 10分若PNGN=21,则PGGN=31, PG=3GN.即=.解得:,(舍去).当时,=.此时点P的坐标为.综上所述,当点P坐标为或时,PGA的面积被直线AC分成12两部分 12分124、(2010年山东省临沂市)25(本小题满分11分)如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD(1)判断ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;(3)保持图2中ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧)试探究线段AD、BE、DE长度之间有什么关系?并给予证明图1图2图3第25题图【解答】25. 解 (1) ABC为等腰直角三角形。 如图1,在矩形ABED中,点C是边DE的中点, 且AB=2AD,AD=DC=CE=EB,ÐD=ÐE=90°, RtADCRtBEC。AC=BC,Ð1=Ð2=45°, ÐACB=90°,ABC为等腰直角三角形。 (2) DE=AD+BE; 如图2,在RtADC和RtCEB中,Ð1+ÐCAD=90°,Ð1+Ð2=90°, ÐCAD=Ð2。又AC=CB,ÐADC=ÐCEB=90°,RtADCRtCEB。 DC=BE,CE=AD,DC+CE=BE+AD,即DE=AD+BE。 (3) DE=BE-AD。 如图3,RtADC和RtCEB中,Ð1+ÐCAD=90°,Ð1+Ð2=90°, ÐCAD=Ð2,又ÐADC=ÐCEB=90°,AC=CB, RtADCRtCEB,DC=BE,CE=AD,DC-CE=BE-AD,1ABCDE图12MNABCDE图212ABCDEMN图312 即DE=BE-AD。ACB第26题图125、(2010年山东省临沂市)26(本小题满分13分)如图:二次函数y=x2 + ax + b的图象与x轴交于A(-,0),B(2,0)两点,且与y轴交于点C(1)求该抛物线的解析式,并判断ABC的形状;(2)在x轴上方的抛物线上有一点D,且A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由【解答】26. 解 (1) 根据题意,将A(-,0),B(2,0)代入y= -x2+ax+b中,得,解这个 方程,得a=,b=1,该拋物线的解析式为y= -x2+x+1,当 x=0时,y=1, 点C的坐标为(0,1)。在AOC中,AC=。 在BOC中,BC=。 AB=OA+OB=+2=,AC 2+BC 2=+5=AB 2,ABC是直角三角形。yABCOxP (2) 点D的坐标为(,1)。 (3) 存在。由(1)知,ACBC。 j 若以BC为底边,则BC/AP,如图1所示,可求得直线 BC的解析式为y= -x+1,直线AP可以看作是由直线 BC平移得到的,所以设直线AP的解析式为y= -x+b, 把点A(-,0)代入直线AP的解析式,求得b= -, 直线AP的解析式为y= -x-。点P既在拋物线上,又在直线AP上,yABCOPx 点P的纵坐标相等,即-x2+x+1= -x-,解得x1=, x2= -(舍去)。当x=时,y= -,点P(,-)。 k 若以AC为底边,则BP/AC,如图2所示。 可求得直线AC的解析式为y=2x+1。 直线BP可以看作是由直线AC平移得到的, 所以设直线BP的解析式为y=2x+b,把点B(2,0)代 入直线BP的解析式,求得b= -4, 直线BP的解析式为y=2x-4。点P既在拋物线 上,又在直线BP上,点P的纵坐标相等, 即-x2+x+1=2x-4,解得x1= -,x2=2(舍去)。 当x= -时,y= -9,点P的坐标为(-,-9)。 综上所述,满足题目条件的点P为(,-)或(-,-9)。126、(2010年山东省青岛市)23.(本题满分10分)问题再现O:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面如右图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个正六边形的内角问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角根据题意,可得方程:,整理得:,我们可以找到惟一一组适合方程的正整数解为 结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由验证2:结论2: 上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程猜想3: . 验证3:结论3: 【解答】23(本小题满分10分)解:3个; 1分验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角根据题意,可得方程:整理得:, 可以找到两组适合方程的正整数解为和3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?6分验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角. 根据题意,可得方程:整理得:,可以找到惟一一组适合方程的正整数解为.8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.)10分127、(2010年山东省青岛市)24.(本题满分12分)已知:把RtABC和RtDEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上ACB = EDF = 90°,DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm如图(2),DEF从图(1)的位置出发,以1 cm/s的速度沿CB向ABC匀速移动,在DEF移动的同时,点P从ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当DEF的顶点D移动到AC边上时,DEF停止移动,点P也随之停止移动DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0t4.5)解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由ADBCF(E)图(1)ADBCFE图(2)PQ(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由(图(3)供同学们做题使用)ABC图(3)解:(1)(2)(3) (用圆珠笔或钢笔画图)【解答】24(本小题满分12分)解:(1)点A在线段PQ的垂直平分线上,AP = AQ. DEF = 45°,ACB = 90°,DEFACBEQC = 180°,EQC = 45°. DEF =EQC. CE = CQ. 由题意知:CE = t,BP =2 t, CQ = t. AQ = 8t. 在RtABC中,由勾股定理得:AB = 10 cm . 则AP = 102 t. 102 t = 8t. 解得:t = 2. 答:当t = 2 s时,点A在线段PQ的垂直平分线上. 4分图(2)QADBCFEPM (2)过P作,交BE于M,在RtABC和RtBPM中, . PM = . BC = 6 cm,CE = t, BE = 6t. y = SABCSBPE = ,抛物线开口向上.当t = 3时,y最小=.答:当t = 3s时,四边形APEC的面积最小,最小面积为cm2.8分 (3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上.过P作,交AC于N,CEADBF图(3)PQN.,PAN BAC.NQ = AQAN,NQ = 8t() = ACB = 90°,B、C(E)、F在同一条直线上,QCF = 90°,QCF = PNQ.FQC = PQN,QCFQNP .解得:t = 1.答:当t = 1s,点P、Q、F三点在同一条直线上. 12分128、(2010年山东省日照市)23(本题满分10分) 如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米 已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8米(1)求出点A的坐标及直线OA的解析式;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点 【解答】23(本题满分10分) 解:(1)在RtAOC中,AOC=30 o ,OA=8,AC=OA·sin30o=8×=, OC=OA·cos30o=8×=12点A的坐标为(12,) 2分设OA的解析式为y=kx,把点A(12,)的坐标代入得: =12k ,k= ,OA的解析式为y=x; 4分(2) 顶点B的坐标是(9,12), 点O的坐标是(0,0)设抛物线的解析式为y=a(x-9)+12,6分把点O的坐标代入得:0=a(0-9)+12,解得a= ,抛物线的解析式为y= (x-9)+12 及y= x+ x; 8分(3) 当x=12时,y= ,小明这一杆不能把高尔夫球从O点直接打入球洞A点 10分129、(2010年山东省日照市)24(本题满分10分)如图,在ABC中,AB=AC,以AB为直径的O交AC与E,交BC与D求证:(1)D是BC的中点;(2)BECADC;(3)BC2=2AB·CE【解答】24(本题满分10分) (1)证明:AB是O的直径,ADB=90° ,即AD是底边BC上的高 1分又AB=AC,ABC是等腰三角形, D是BC的中点;

    注意事项

    本文(冲刺2011 2010年中考数学压轴题及解答.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开