平面向量数量积的坐标表示 模夹角.doc
【精品文档】如有侵权,请联系网站删除,仅供学习与交流平面向量数量积的坐标表示模夹角.精品文档.数学必修四:平面向量数量积的坐标表示模 夹角(1)时间:2011.3.10 份数:830 编制:康志轩【基础训练】1.则_ _2.与垂直的单位向量是_A. B. D. 3.则方向上的投影为_4. A(1,0) B(3,1) C(2,0),且则的夹角为_5.A(1,2),B(2,3),C(2,0)所以为( ) A.直角三角形B.锐角三角形 C.钝角三角形D.不等边三角形6.已知A(1,0),B(5,-2),C(8,4),D(4.6)则四边形ABCD为()A.正方形B.菱形C.梯形D. 矩形7.已知_(其中为两个相互垂直的单位向量)8.已知则等于()A.-14 B.-7 C.(7,-7) D.(-7,7)9.已知A(-1,1),B(1,2),C( 3, ) ,则等于()A. B. 5 C. D. 10.已知则的夹角为( ) A.150º B.120 º C.60 º D.30 º11.若与 互相垂直,则m的值为()A.-6 B.8 C.-10 D.10【举一反三、能力拓展】12.求与13.已知点A(1,2),B(4,-1),试在y轴上找点C,使ABC90º若不能,说明理由;若能,求C坐标。