欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学高考分类整理汇编解答题目理05——解析几何.doc

    • 资源ID:17238489       资源大小:1.43MB        全文页数:21页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学高考分类整理汇编解答题目理05——解析几何.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流数学高考分类整理汇编解答题目理05解析几何.精品文档.05 解析几何1. (2011天津卷理)18(本小题满分13分)在平面直角坐标系中,点为动点,分别为椭圆的左右焦点已知为等腰三角形()求椭圆的离心率;()设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程【解析】18本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分. (I)解:设 由题意,可得即整理得(舍),或所以(II)解:由(I)知可得椭圆方程为直线PF2方程为A,B两点的坐标满足方程组消去y并整理,得解得 得方程组的解不妨设设点M的坐标为,由于是由即,化简得将所以因此,点M的轨迹方程是2. (北京理)19(本小题共14分)已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点.(I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.【解析】(19)(共14分)解:()由已知得所以所以椭圆G的焦点坐标为离心率为()由题意知,.当时,切线l的方程,点A、B的坐标分别为此时当m=1时,同理可得当时,设切线l的方程为由设A、B两点的坐标分别为,则又由l与圆所以由于当时,所以.因为且当时,|AB|=2,所以|AB|的最大值为2.3. (辽宁卷理)20(本小题满分12分)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线lMN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D (I)设,求与的比值; (II)当e变化时,是否存在直线l,使得BOAN,并说明理由【解析】20解:(I)因为C1,C2的离心率相同,故依题意可设设直线,分别与C1,C2的方程联立,求得 4分当表示A,B的纵坐标,可知 6分 (II)t=0时的l不符合题意.时,BO/AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即解得因为所以当时,不存在直线l,使得BO/AN;当时,存在直线l使得BO/AN. 12分4. (全国大纲卷理)21(本小题满分12分)(注意:在试题卷上作答无效)已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足()证明:点P在C上;()设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上【解析】21解:(I)F(0,1),的方程为,代入并化简得2分设则由题意得所以点P的坐标为经验证,点P的坐标为满足方程故点P在椭圆C上。6分 (II)由和题设知, PQ的垂直平分线的方程为设AB的中点为M,则,AB的垂直平分线为的方程为由、得的交点为。9分故|NP|=|NA|。又|NP|=|NQ|,|NA|=|NB|,所以|NA|=|NP|=|NB|=|MQ|,由此知A、P、B、Q四点在以N为圆心,NA为半径的圆上12分5. (2011全国新课标理)(20)(本小题满分12分) 在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足, ,M点的轨迹为曲线C。()求C的方程;()P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。【解析】(20)解:()设M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由愿意得知(+) =0,即(-x,-4-2y) (x,-2)=0.所以曲线C的方程式为y=x-2.()设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x因此直线的方程为,即。则O点到的距离.又,所以当=0时取等号,所以O点到距离的最小值为2.6. (江西卷理)20(本小题满分13分)是双曲线:上一点,分别是双曲线的左、右定点,直线的斜率之积为.(1) 求双曲线的离心率;(2) 过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上的一点,满足,求的值.【解析】(1)已知双曲线E:,在双曲线上,M,N分别为双曲线E的左右顶点,所以,直线PM,PN斜率之积为而,比较得(2)设过右焦点且斜率为1的直线L:,交双曲线E于A,B两点,则不妨设,又,点C在双曲线E上:*(1)又 联立直线L和双曲线E方程消去y得:由韦达定理得:,代入(1)式得:7. (山东卷理)22(本小题满分14分)已知动直线与椭圆C: 交于P、Q两不同点,且OPQ的面积=,其中O为坐标原点.()证明和均为定值;()设线段PQ的中点为M,求的最大值;()椭圆C上是否存在点D,E,G,使得?若存在,判断DEG的形状;若不存在,请说明理由.【解析】22(I)解:(1)当直线的斜率不存在时,P,Q两点关于x轴对称,所以因为在椭圆上,因此又因为所以由、得此时 (2)当直线的斜率存在时,设直线的方程为由题意知m,将其代入,得其中即(*)又所以因为点O到直线的距离为所以又整理得且符合(*)式,此时综上所述,结论成立。 (II)解法一: (1)当直线的斜率存在时,由(I)知因此 (2)当直线的斜率存在时,由(I)知所以所以,当且仅当时,等号成立.综合(1)(2)得|OM|·|PQ|的最大值为解法二:因为所以即当且仅当时等号成立。因此 |OM|·|PQ|的最大值为 (III)椭圆C上不存在三点D,E,G,使得证明:假设存在,由(I)得因此D,E,G只能在这四点中选取三个不同点,而这三点的两两连线中必有一条过原点,与矛盾,所以椭圆C上不存在满足条件的三点D,E,G.8. (2011陕西理)17(本小题满分12分)如图,设P是圆上的动点,点D是P在x轴上的摄影,M为PD上一点,且()当P在圆上运动时,求点M的轨迹C的方程;()求过点(3,0)且斜率为的直线被C所截线段的长度【解析】17解:()设M的坐标为(x,y)P的坐标为(xp,yp)由已知得P在圆上,    ,即C的方程为()过点(3,0)且斜率为的直线方程为,设直线与C的交点为将直线方程代入C的方程,得 即        线段AB的长度为注:求AB长度时,利用韦达定理或弦长公式求得正确结果,同样得分。9. (上海理)23(18分)已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作。(1)求点到线段的距离;(2)设是长为2的线段,求点集所表示图形的面积;(3)写出到两条线段距离相等的点的集合,其中是下列三组点中的一组。对于下列三组点只需选做一种,满分分别是2分, 6分,8分;若选择了多于一种的情形,则按照序号较小的解答计分。【解析】23解: 设是线段上一点,则,当时,。 设线段的端点分别为,以直线为轴,的中点为原点建立直角坐标系,则,点集由如下曲线围成其面积为。 选择, 选择。 选择。10.10. (四川理)21(本小题共l2分) 椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P直线AC与直线BD交于点Q (I)当|CD | = 时,求直线l的方程; (II)当点P异于A、B两点时,求证: 为定值。解析:由已知可得椭圆方程为,设的方程为为的斜率。则的方程为11. (浙江理)21(本题满分15分)已知抛物线:,圆:的圆心为点M()求点M到抛物线的准线的距离;()已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程【解析】21本题主要考查抛物线的几何性质,直线与抛物线、圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。满分15分。 (I)解:由题意可知,抛物线的准线方程为: 所以圆心M(0,4)到准线的距离是(II)解:设,则题意得,设过点P的圆C2的切线方程为,即则即,设PA,PB的斜率为,则是上述方程的两根,所以将代入由于是此方程的根,故,所以由,得,解得即点P的坐标为,所以直线的方程为12. (重庆理)20(本小题满分12分,()小问4分,()小问8分)如题(20)图,椭圆的中心为原点,离心率,一条准线的方程为 ()求该椭圆的标准方程; ()设动点满足:,其中是椭圆上的点,直线与的斜率之积为,问:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由【解析】20(本题12分)解:(I)由解得,故椭圆的标准方程为 (II)设,则由得因为点M,N在椭圆上,所以故设分别为直线OM,ON的斜率,由题设条件知因此所以所以P点是椭圆上的点,设该椭圆的左、右焦点为F1,F2,则由椭圆的定义|PF1|+|PF2|为定值,又因,因此两焦点的坐标为13. (2011安徽理)(21)(本小题满分13分)设,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。【解析】(21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量的概念,性质与运算,动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力,全面考核综合数学素养.解:由知Q,M,P三点在同一条垂直于x轴的直线上,故可设再设解得 将式代入式,消去,得又点B在抛物线上,所以,再将式代入,得故所求点P的轨迹方程为14. (福建理)17(本小题满分13分)已知直线l:y=x+m,mR。(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。【解析】17本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。满分13分。解法一:(I)依题意,点P的坐标为(0,m)因为,所以,解得m=2,即点P的坐标为(0,2)从而圆的半径故所求圆的方程为(II)因为直线的方程为所以直线的方程为由(1)当时,直线与抛物线C相切(2)当,那时,直线与抛物线C不相切。综上,当m=1时,直线与抛物线C相切;当时,直线与抛物线C不相切。解法二:(I)设所求圆的半径为r,则圆的方程可设为依题意,所求圆与直线相切于点P(0,m),则解得所以所求圆的方程为(II)同解法一。15. (2011湖北理)20(本小题满分14分)平面内与两定点,连线的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆或双曲线()求曲线的方程,并讨论的形状与值得关系;()当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得的面积。若存在,求的值;若不存在,请说明理由。【解析】20本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分) 解:(I)设动点为M,其坐标为, 当时,由条件可得即,又的坐标满足故依题意,曲线C的方程为当曲线C的方程为是焦点在y轴上的椭圆;当时,曲线C的方程为,C是圆心在原点的圆;当时,曲线C的方程为,C是焦点在x轴上的椭圆;当时,曲线C的方程为C是焦点在x轴上的双曲线。(II)由(I)知,当m=-1时,C1的方程为当时,C2的两个焦点分别为对于给定的,C1上存在点使得的充要条件是由得由得当或时,存在点N,使S=|m|a2;当或时,不存在满足条件的点N,当时,由,可得令,则由,从而,于是由,可得综上可得:当时,在C1上,存在点N,使得当时,在C1上,存在点N,使得当时,在C1上,不存在满足条件的点N。16. (湖南理)21(本小题满分13分)如图7,椭圆的离心率为,x轴被曲线 截得的线段长等于C1的长半轴长。()求C1,C2的方程;()设C2与y轴的焦点为M,过坐标原点O的直线与C2相交于点A,B,直线MA,MB分别与C1相交与D,E(i)证明:MDME;(ii)记MAB,MDE的面积分别是问:是否存在直线l,使得?请说明理由。【解析】21()由题意知故C1,C2的方程分别为()(i)由题意知,直线l的斜率存在,设为k,则直线l的方程为.由得设是上述方程的两个实根,于是又点M的坐标为(0,1),所以故MAMB,即MDME.(ii)设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为.又直线MB的斜率为,同理可得点B的坐标为于是由得解得则点D的坐标为又直线ME的斜率为,同理可得点E的坐标为于是.因此由题意知,又由点A、B的坐标可知,故满足条件的直线l存在,且有两条,其方程分别为17. (2011广东理)19(本小题满分14分)设圆C与两圆中的一个内切,另一个外切。(1)求C的圆心轨迹L的方程;(2)已知点M,且P为L上动点,求的最大值及此时点P的坐标【解析】19(本小题满分14分) (1)解:设C的圆心的坐标为,由题设条件知化简得L的方程为 (2)解:过M,F的直线方程为,将其代入L的方程得解得因T1在线段MF外,T2在线段MF内,故,若P不在直线MF上,在中有故只在T1点取得最大值2。18. (江苏)18如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)当直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PAPB【解析】18本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分.解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过坐标原点,所以 (2)直线PA的方程解得于是直线AC的斜率为(3)解法一:将直线PA的方程代入则故直线AB的斜率为其方程为解得.于是直线PB的斜率因此解法二:设.设直线PB,AB的斜率分别为因为C在直线AB上,所以从而因此

    注意事项

    本文(数学高考分类整理汇编解答题目理05——解析几何.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开