欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    用射影面积法求二面角在高考中的妙用.doc

    • 资源ID:17258697       资源大小:684.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    用射影面积法求二面角在高考中的妙用.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流用射影面积法求二面角在高考中的妙用.精品文档.用射影面积法求二面角在高考中的妙用 立体几何中的二面角是一个非常重要的数学概念,求二面角的大小更是历年高考的热点问题,在每年全国各省市的高考试题的大题中几乎都出现. 求二面角的方法很多,但是,对无棱二面角,或者不容易作出二面角的平面角时,如何求这个二面角的大小呢?用射影面积法是解决这类问题的捷径,本文以近年高考题为例说明这个方法在解题中的妙用,以飨读者!定理 已知平面内一个多边形的面积为S,它在平面内的射影图形的面积为,平面和平面所成的二面角的大小为,则.本文仅对多边形为三角形为例证明,其它情形请读者自证.AB D C证明:如图,平面内的ABC在平面的射影为,作于D,连结AD.于,在内的射影为.又,(三垂线定理的逆定理).为二面角BC的平面角.设ABC和的面积分别为S和,则.D CA1 B1E典题妙解下面以近年高考题为例说明上述结论在解题中的妙用.例1 如图, 已知正方体ABCDA1B1C1D1中,E是A A1棱的中点,则面BE C1与面AC所成的二面角的大小为( )D CA1 B1EA. B. C. D. 解:连结AC,则在面AC内的射影是ABC,设它们的面积分别为S和,所成的二面角为 .设正方体的棱长为2,则AB = BC = 2,故答案选D.例2(04北京)如图, 已知四棱锥SABCD的底面是边长为1的正方形, SD面AC, SB = . D(1) 求证:BCSC;(2) 求面ASD与面BSC所成的二面角的大小;(3) 设棱SA的中点为M, 求异面直线DM与SB所成的角的大小.(1)证明: SD面AC, SC在面AC内的射影是SD. 又四边形ABCD是正方形,面AC, BCSC(三垂线定理).(2)解: SD面AC,面AC,.又四边形ABCD是正方形,. 而,CD面ASD. 又ABCD,BA面ASD. SBC在面SAD的射影是SAD,设它们的面积分别为S和,所成的二面角为 . 故.所以面ASD与面BSC所成的二面角的大小为.DE(3)解:取AB的中点E,连结DE、ME.,MESB.异面直线DM与SB所成的角就是,设. 故.D所以异面直线DM与SB所成的角的大小为.解法二:面SAD,SB在面SAD 内的射影是SA.又.而面SAD,(三垂线定理).所以异面直线DM与SB所成的角的大小为.例3 (04浙江)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB = ,AF = 1,M是线段EF的中点. (1) 求证:AM平面BDE;(2) 求证:面AE平面BDF;(3) 求二面角ADFB的大小.证明:(1)设,则,连结OE.四边形ACEF是矩形,O,EMAO.四边形AOEM是平行四边形,从而AMEO.又平面BDE, AM平面BDE.(2)四边形ABCD是正方形,.又正方形ABCD和矩形ACEF所在的平面互相垂直,面BD面AE= AC ,从而.而,.平面BDF,面AE平面BDF.(3)解:,.BDF在面ADF上的射影是ADF,设它们的面积分别为S和,所成的二面角为. AB = ,AF = 1,.O连结FO,则.故.PA DB C所以二面角ADFB的大小为.例4 (08天津)如图,在四棱锥PABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,.(1)证明:AD平面PAB;(2)求异面直线PC与AD所成的角的大小;(3)求二面角PBDA的大小.(1)证明: ,即. 又四边形ABCD是正方形,而,AB、PA面PAB,AD平面PAB.(2)ADBC,异面直线PC与AD所成的角就是PC与BC所成的角,即.在PAB中,AB = 3,PA = 2,由(1)得,AD平面PAB.,即. 又BC = AD = 2,PA DB CE. .所以异面直线PC与AD所成的角的大小为.(3)作于E,连结DE.由(1)知,而,面ABCD.PBD在面ABCD内的射影是EBD,设它们的面积分别为S和,所成的二面角为 .所以二面角PBDA的大小为.点评:例1和例2 中的二面角就是无棱二面角,例3和例4中的二面角虽然是有棱二面角,但是不容易作出二面角的平面角,用定义法解决这两类问题就显得非常繁杂,并且不知如何下手,而另辟溪径,用射影面积法则是化繁为简,曲径通幽!金指点睛VD CA B1.(05全国)如图,在四棱锥VABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD底面ABCD.(1)证明:AB平面VAD;(2)求面VAD与面VDB所成二面角的大小.C BADE2.(06全国)如图,在直三棱柱ABC中,AB = BC ,D、E分别为、的中点.(1)证明:ED为异面直线和的公垂线;(2)设,求二面角的大小.EB CA DP3.(07陕西)如图,在底面为直角梯形的四棱锥PABCD中,ADBC,PA平面ABCD,PA = 4,AD = 2,BC = 6.(1)求证:BD平面PAC;(2)求二面角APCD的大小.SA BD CE4. (09湖北)如图,四棱柱SABCD的底面是正方形,SD平面ABCD,SD = AD = a ,点E是SD上的点,且(0).(1)求证:对任意,都有ACBE;(2)若二面角CAED的大小为,求的值.金指点睛的参考答案VD CA B1.(05全国)如图,在四棱锥VABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD底面ABCD.(1)证明:AB平面VAD;(2)求面VAD与面VDB所成二面角的大小.(1)证明:取AD的中点E,连结VE. 又平面VAD底面ABCD,VE平面VAD, VE底面ABCD. VA在底面ABCD的射影是AD.ABAD,AB底面ABCD, ABVA(三垂线定理). 而VA、AD平面VAD,故AB平面VAD.(2)由(1)可知,AB平面VAD, VBD在平面VAD的射影是VAD,设它们的面积分别为S和,所成的二面角为. 设正方形的边长为1,则.所以面VAD与面VDB所成二面角的大小为.2.(06全国)如图,在直三棱柱ABC中,AB = BC ,D、E分别为、的中点.C BADE(1)证明:ED为异面直线和的公垂线;(2)设,求二面角的大小.(1)证明:取AC的中点F,连结EF、BF.在直三棱柱ABC中,面ABC,C BADEFDB,EF= DB,面ABC.四边形BDEF是矩形. 从而.在RtABD和Rt中, RtABDRt. 而 C BADE所以ED为异面直线和的公垂线.(2)解:连结. ,即面在面内的射影是.在面内的射影是.设它们的面积分别为S和,所成的二面角为.设AB = BC = 1,则.所以二面角的大小为.EB CA DP3.(07陕西)如图,在底面为直角梯形的四棱锥PABCD中,ADBC,PA平面ABCD,PA = 4,AD = 2,BC = 6.(1)求证:BD平面PAC;(2)求二面角APCD的大小.(1)证明:在RtABD和RtABC中, AD = 2,BC = 6. 而,EB CA DP,即. 又 PA平面ABCD,平面ABCD,.,PA、AC平面PAC,故BD平面PAC.(2)解:连结PE. 由(1)知,BD平面PAC.PDC在平面PAC内的射影是PEC,设它们的面积分别为S和,所成的二面角为.PA平面ABCD,(三垂线定理).,从而. 所以二面角APCD的大小SA BD CEO4. (09湖北)如图,四棱柱SABCD的底面是正方形,SD平面ABCD,SD = AD = a ,点E是SD上的点,且(0).(1)求证:对任意,都有ACBE;(2)若二面角CAED的大小为,求的值.(1)证明:连结BD. 四边形ABCD是正方形,. 又 SD平面ABCD,SD = a ,点E是SD上的点,且(0), 点E在线段SD上,且不与点D重合,因而BE在平面ABCD 内的射影是BD. 对任意,都有ACBE(三垂线定理).(2)解:设,连结EO. SD平面ABCD,点E是SD上的点,平面ABCD, .又四边形ABCD是正方形,.而,SD、AD面SAD. CE在平面SAD内的射影是AE. CAE在在平面SAD 内的射影是DAE. 设它们的面积分别为S和,所成的二面角为,则.解得,所以的值为.

    注意事项

    本文(用射影面积法求二面角在高考中的妙用.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开