欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    机械优化设计Matlab-优化工具箱基本用法(共38页).doc

    • 资源ID:17308617       资源大小:481.50KB        全文页数:38页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    机械优化设计Matlab-优化工具箱基本用法(共38页).doc

    精选优质文档-倾情为你奉上Matlab 优化工具箱类 型模 型基本函数名一元函数极小Min F(x)s.t.x1<x<x2x=fminbnd(F,x1,x2)无约束极小Min F(X)X=fminunc(F,X0)X=fminsearch(F,X0)线性规划Min s.t.AX<=bX=linprog(c,A,b)二次规划Min xTHx+cTxs.t. Ax<=bX=quadprog(H,c,A,b)约束极小(非线性规划)Min F(X)s.t. G(X)<=0X=fmincon(FG,X0)达到目标问题Min rs.t. F(x)-wr<=goalX=fgoalattain(F,x,goal,w)极小极大问题Min max Fi(x)X Fi(x)s.t. G(x)<=0X=fminimax(FG,x0)变量调用函数描 述flinprog,quadprog线性规划的目标函数f*X 或二次规划的目标函数X*H*X+f*X 中线性项的系数向量funfminbnd,fminsearch,fminunc, fmincon,lsqcurvefit,lsqnonlin, fgoalattain,fminimax非线性优化的目标函数.fun必须为行命令对象或M文件、嵌入函数、或MEX文件的名称Hquadprog二次规划的目标函数X*H*X+f*X 中二次项的系数矩阵A,blinprog,quadprog,fgoalattain, fmincon, fminimaxA矩阵和b向量分别为线性不等式约束:中的系数矩阵和右端向量Aeq,beqlinprog,quadprog,fgoalattain, fmincon, fminimaxAeq矩阵和beq向量分别为线性等式约束: 中的系数矩阵和右端向量vlb,vublinprog,quadprog,fgoalattain, fmincon,fminimax,lsqcurvefit,lsqnonlinX的下限和上限向量:vlbXvubX0除fminbnd外所有优化函数迭代初始点坐标x1,x2fminbnd函数最小化的区间options所有优化函数优化选项参数结构,定义用于优化函数的参数x = bintprog(f, A, b, Aeq, Beq, x0, options) 0-1规划用MATLAB优化工具箱解线性规划min z=cX 1、模型:命令:x=linprog(c,A,b) 2、模型: 命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:存在,则令A= ,b= . 若没有等式约束, 则令Aeq= , beq= .3、模型:命令:1 x=linprog(c,A,b,Aeq,beq, VLB,VUB) 2 x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:1 若没有等式约束, 则令Aeq= , beq= . 2其中X0表示初始点 4、命令:x,fval=linprog()返回最优解及处的目标函数值fval.例1 max 解 编写M文件小xxgh1.m如下:c=-0.4 -0.28 -0.32 -0.72 -0.64 -0.6; A=0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08; b=850;700;100;900; Aeq=; beq=; vlb=0;0;0;0;0;0; vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)例2 解: 编写M文件xxgh2.m如下: c=6 3 4; A=0 1 0; b=50; Aeq=1 1 1; beq=120; vlb=30,0,20; vub=; x,fval=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型: 编写M文件xxgh3.m如下:f = 13 9 10 11 12 8;A = 0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3;b = 800; 900;Aeq=1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1;beq=400 600 500;vlb = zeros(6,1);vub=;x,fval = linprog(f,A,b,Aeq,beq,vlb,vub)例4某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?解 设需要一级和二级检验员的人数分别为x1、x2人,则应付检验员的工资为:因检验员错检而造成的损失为:故目标函数为:约束条件为:线性规划模型: 编写M文件xxgh4.m如下:c = 40;36;A=-5 -3;b=-45;Aeq=;beq=;vlb = zeros(2,1);vub=9;15; %调用linprog函数:x,fval = linprog(c,A,b,Aeq,beq,vlb,vub)结果为:x = 9.0000 0.0000fval =360即只需聘用9个一级检验员。Matlab优化工具箱简介1.MATLAB求解优化问题的主要函数2.优化函数的输入变量使用优化函数或优化工具箱中其它优化函数时, 输入变量见下表:3. 优化函数的输出变量下表:4控制参数options的设置Options中常用的几个参数的名称、含义、取值如下:(1)Display: 显示水平.取值为off时,不显示输出; 取值为iter时,显示每次迭代的信息;取值为final时,显示最终结果.默认值为final.(2)MaxFunEvals: 允许进行函数评价的最大次数,取值为正整数.(3) MaxIter: 允许进行迭代的最大次数,取值为正整数控制参数options可以通过函数optimset创建或修改。命令的格式如下:(1) options=optimset(optimfun) 创建一个含有所有参数名,并与优化函数optimfun相关的默认值的选项结构options.(2)options=optimset(param1,value1,param2,value2,.) 创建一个名称为options的优化选项参数,其中指定的参数具有指定值,所有未指定的参数取默认值.(3)options=optimset(oldops,param1,value1,param2, value2,.) 创建名称为oldops的参数的拷贝,用指定的参数值修改oldops中相应的参数.例:opts=optimset(Display,iter,TolFun,1e-8) 该语句创建一个称为opts的优化选项结构,其中显示参数设为iter, TolFun参数设为1e-8.用Matlab解无约束优化问题 一元函数无约束优化问题常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)x,fval= fminbnd(.)(4)x,fval,exitflag= fminbnd(.)(5)x,fval,exitflag,output= fminbnd(.)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。 函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。例1 求在0<x<8中的最小值与最大值主程序为wliti1.m: f='2*exp(-x).*sin(x)' fplot(f,0,8); %作图语句 xmin,ymin=fminbnd (f, 0,8) f1='-2*exp(-x).*sin(x)' xmax,ymax=fminbnd (f1, 0,8)运行结果: xmin = 3.9270 ymin = -0.0279 xmax = 0.7854 ymax = 0.6448例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?解先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).2*x;主程序为wliti2.m: x,fval=fminbnd('fun0',0,1.5); xmax=x fmax=-fval运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.2、多元函数无约束优化问题标准型为:min F(X)命令格式为:(1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 )(2)x= fminunc(fun,X0 ,options); 或x=fminsearch(fun,X0 ,options)(3)x,fval= fminunc(.); 或x,fval= fminsearch(.)(4)x,fval,exitflag= fminunc(.); 或x,fval,exitflag= fminsearch(5)x,fval,exitflag,output= fminunc(.); 或x,fval,exitflag,output= fminsearch(.)说明: fminsearch是用单纯形法寻优. fminunc的算法见以下几点说明:1 fminunc为无约束优化提供了大型优化和中型优化算法。由options中的参数LargeScale控制:LargeScale=on(默认值),使用大型算法LargeScale=off(默认值),使用中型算法2 fminunc为中型优化算法的搜索方向提供了4种算法,由 options中的参数HessUpdate控制:HessUpdate=bfgs(默认值),拟牛顿法的BFGS公式;HessUpdate=dfp,拟牛顿法的DFP公式;HessUpdate=steepdesc,最速下降法3 fminunc为中型优化算法的步长一维搜索提供了两种算法, 由options中参数LineSearchType控制:LineSearchType=quadcubic(缺省值),混合的二次和三 次多项式插值;LineSearchType=cubicpoly,三次多项式插 使用fminunc和 fminsearch可能会得到局部最优解.例3 min f(x)=(4x12+2x22+4x1x2+2x2+1)*exp(x1)1、编写M-文件 fun1.m: function f = fun1 (x) f = exp(x(1)*(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1); 2、输入M文件wliti3.m如下: x0 = -1, 1; x=fminunc(fun1,x0); y=fun1(x)3、运行结果: x= 0.5000 -1.0000 y = 1.3029e-10例4 Rosenbrock 函数 f(x1,x2)=100(x2-x12)2+(1-x1)2 的最优解(极小)为x*=(1,1),极小值为f*=0.试用 不同算法(搜索方向和步长搜索)求数值最优解. 初值选为x0=(-1.2 , 2).1. 为获得直观认识,先画出Rosenbrock 函数的三维图形, 输入以下命令: x,y=meshgrid(-2:0.1:2,-1:0.1:3); z=100*(y-x.2).2+(1-x).2; mesh(x,y,z)2. 画出Rosenbrock 函数的等高线图,输入命令: contour(x,y,z,20) hold on plot(-1.2,2,' o '); text(-1.2,2,'start point') plot(1,1,'o') text(1,1,'solution')3.用fminsearch函数求解输入命令: f='100*(x(2)-x(1)2)2+(1-x(1)2' x,fval,exitflag,output=fminsearch(f, -1.2 2)运行结果: x =1.0000 1.0000fval =1.9151e-010exitflag = 1output = iterations: 108 funcCount: 202 algorithm: 'Nelder-Mead simplex direct search'4. 用fminunc 函数(1)建立M-文件fun2.m function f=fun2(x) f=100*(x(2)-x(1)2)2+(1-x(1)2(2)主程序wliti44.mRosenbrock函数不同算法的计算结果可以看出,最速下降法的结果最差.因为最速下降法特别不适合于从一狭长通道到达最优解的情况.例5 产销量的最佳安排 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量. 符号说明z(x1,x2)表示总利润;p1,q1,x1分别表示甲的价格、成本、销量; p2,q2,x2分别表示乙的价格、成本、销量; aij,bi,i,ci(i,j =1,2)是待定系数.基本假设1价格与销量成线性关系利润既取决于销量和价格,也依赖于产量和成本。按照市场规律,甲的价格p1会随其销量x1的增长而降低,同时乙的销量x2的增长也会使甲的价格有稍微的下降,可以简单地假设价格与销量成线性关系,即: p1 = b1 - a11 x1 - a12 x2 ,b1,a11,a12 > 0,且a11 > a12;同理, p2 = b2 - a21 x1- a22 x2 ,b2,a21,a22 > 02成本与产量成负指数关系甲的成本随其产量的增长而降低,且有一个渐进值,可以假设为负指数关系,即: 同理, 模型建立总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,1=0.015,c1=20, r2=100,2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求: z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2 的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.模型求解1.建立M-文件fun.m: function f = fun(x) y1=(100-x(1)- 0.1*x(2)-(30*exp(-0.015*x(1)+20)*x(1); y2=(280-0.2*x(1)- 2*x(2)-(100*exp(-0.02*x(2)+30)*x(2); f=-y1-y2;2.输入命令: x0=50,70; x=fminunc(fun,x0), z=fun(x)3.计算结果: x=23.9025, 62.4977, z=6.4135e+003 即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.非线性规划1、 二次规划用MATLAB软件求解,其输入格式如下: 1.x=quadprog(H,C,A,b); 2.x=quadprog(H,C,A,b,Aeq,beq); 3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB); 4.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0); 5.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options); 6.x,fval=quaprog(.); 7.x,fval,exitflag=quaprog(.); 8.x,fval,exitflag,output=quaprog(.);例1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t. x1+x22 -x1+2x22 x10, x20 1、写成标准形式:s.t.2、 输入命令: H=1 -1; -1 2; c=-2 ;-6;A=1 1; -1 2;b=2;2; Aeq=;beq=; VLB=0;0;VUB=; x,z=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)3、运算结果为: x =0.6667 1.3333 z = -8.2222一般非线性规划标准型为:min F(X) s.t AX<=b G(X) Ceq(X)=0 VLBXVUB其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:1. 首先建立M文件fun.m,定义目标函数F(X):function f=fun(X);f=F(X);2. 若约束条件中有非线性约束:G(X)或Ceq(X)=0,则建立M文件nonlcon.m定义函数G(X)与Ceq(X):function G,Ceq=nonlcon(X)G=.Ceq=.3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下: (1) x=fmincon(fun,X0,A,b) (2) x=fmincon(fun,X0,A,b,Aeq,beq) (3) x=fmincon(fun,X0,A,b, Aeq,beq,VLB,VUB) (4) x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon)(5)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options) (6) x,fval= fmincon(.) (7) x,fval,exitflag= fmincon(.) (8)x,fval,exitflag,output= fmincon(.)注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。2 fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。3 fmincon函数可能会给出局部最优解,这与初值X0的选取有关。例2 s.t.1、写成标准形式: s.t. 2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)23、再建立主程序youh2.m: x0=1;1; A=2 3 ;1 4; b=6;5; Aeq=;beq=; VLB=0;0; VUB=; x,fval=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB)4、运算结果为: x = 0.7647 1.0588 fval = -2.0294例31先建立M文件 fun4.m,定义目标函数: function f=fun4(x); f=exp(x(1) *(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);2再建立M文件mycon.m定义非线性约束: function g,ceq=mycon(x) g=x(1)+x(2);1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10;3主程序youh3.m为:x0=-1;1;A=;b=;Aeq=1 1;beq=0;vlb=;vub=;x,fval=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')3. 运算结果为: x = -1.2250 1.2250 fval = 1.8951例4资金使用问题设有400万元资金, 要求4年内使用完, 若在一年内使用资金x万元, 则可得效益万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.设变量表示第i年所使用的资金数,则有 1先建立M文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1)+sqrt(x(2)+sqrt(x(3)+sqrt(x(4);2再建立M文件mycon1.m定义非线性约束: function g,ceq=mycon1(x) g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=03主程序youh4.m为:x0=1;1;1;1;vlb=0;0;0;0;vub=;A=;b=;Aeq=;beq=;x,fval=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')得到 matlab优化工具箱使用实战求下列函数的极小值。f(x)=x.4-3*x.3+x.2-2;利用遗传算法求解,选择ga solver(求解器),输入适应函数,输入变量个数,start就可以了,充分反应了遗传算法的优越性。接着是对无约束一维极值问题的求解。首先是进退法搜索单谷函数的极值问题。原理就是在固定区间内按照一定步长无穷逼近最优解,不过无论怎样逼近,最后得到的还是符合精度的区间,并不是理论最优解。Matlab中用minJT函数来实现。相关的函数代码可以在matlab相关文件夹中找到,这里就不多说,不过还是按这种方法求一下上面的极小值问题。代码如下:syms x;f=x4-3*x3+x2-2;x1,x2=minJT(f,0,0.001);在2009b中结果是。2009b已经没有这个函数了。 无语了一下,继续看下一种方法,黄金分割法。也是一种无穷逼近法,利用黄金分割长生前一个区间中的内点,舍去一个端点。逐渐逼近最小值,是一种单向收缩法。不过2009b也没有这个函数了。 然后是斐波那契法。我们首先就会联想到斐波那契数列,不过这里确实用到了斐波那契数列。斐波那契法显然是一种双向收缩法具体的搜索原理就不多追究了。然后便是牛顿迭代法,原来就学过的一种速度相当快的迭代方法,其中优化后的全局牛顿法,一般的牛顿法需要初始点接近最值点而全局牛顿法则不需要这个要求。关最后还有割线法,二次插值和三次插值法。以后会慢慢补充相关的函数m文件的。 既然是学习matlab优化工具箱,最后还是得回到工具箱的应用上。fminbnd是优化工具箱中可用来求解一维优化问题的函数。并且可以在算法一栏中选择相关的算法,并利用options结构参数来控制优化过程的进行。下面就写一个例子,求以下式子在-2,2上的极小值x,favl=fminbnd(abs(x+1)+x2+x-2,-2,2);得出结果:x=-1;favl=-2接下来我需要获取求解的相关细节。那么有如下代码:x,favl,exitflag,output=fminbnd('abs(x+1)+x2+x-2',-2,2);于是有exitflag=1;output=iterations: 9 funcCount: 10 algorithm: 'golden section search, parabolic interpolation' message: 1x112 char值得一提的这里用到的算法是黄金切割和抛物线算法。再访问output.message对象成员;Optimization terminated: the current x satisfies the termination criteria using OPTIONS.TolX of 1.e-004说明结果精度为1*10-4。下面对相关options进行设定后重新求解:首先看一下fminbnd的默认参数:结构体的成员非常多,一时间也不能完全解释清楚,但是可以给出几个经常用到的: Display: 'notify' MaxFunEvals: 500 MaxIter: 500 TolFun: TolX: 1.0000e-004 FunValCheck: 'off'很容易可以得知,这里的最大目标函数检查步数和迭代步数,以及精度值,最后一项是对结果的检验,判断目标值是否可以接受,这里我们改变一下:options=optimset(FunValCheck,on);再看相关的参数值:Display: MaxFunEvals: MaxIter: TolFun: TolX: FunValCheck: 'on'这里还要注意到其他的属性值都变成了空,说明其不会返回其默认值。这里的optimset就相当于类中的接口,以提供访问其私有成员的权限。然而函数fminbnd用到的收敛方法具有一定的局限:1.只能用来求连续单变量函数的极值,如果函数的连续性不好的话,可以利用黄金分割法来求解。2.如果给定的区间上有多个极值点,该函数只能求解其中的一个,而这个极值点很有可能并不是最小值点。3.如果极值点是区间的端点的话,收敛速度会比较慢。为了克服这些缺陷,我们可以尝试使用改进的fminbnd函数fminv函数代码如下:function fminv(f,x1,x2) r1=fminbnd(f,x1,x2); if abs(r1-x1)<0.001|abs(r1-x2)<0.001 disp(r1); return;else subfminv(f,x1,x2);end function subfminv(f,x1,x2)r1=fminbnd(f,x1,x2);if abs(r1-x1)<0.001|abs(r1-x2)<0.001 return;else disp(r1); subfminv(f,x1,r1); subfminv(f,r1,x2); return;end下面对一个例子进行求解:fminv('(x+1)*sin(x+1)',-2*pi,2*pi)输出结果:-1.0000 -5.9132 3.9132再求极大值点fminv('-(x+1)*sin(x+1)',-2*pi,2*pi)求出结果:1.0288 -3.0288接着提到的是fminsearch的用法,这是一个主要用于多变量极值的问题,但是可以用来求单变量的极值问题,这里就不多提。 最后如果带求的函数中含有参变量,那么fminbnd函数就无能为力了,所以这个时候采用maple函数进行求解,我们都知道maple是一个非常强大的符号求解软件,于是以其名字命名的函数自然也能够解决这种问题,下面执行以下的例子:然而自2008b开始matlab就不提供maple的符号工具箱了,所以只有在较低版本中下面代码才会有用:syms t x;maple('minimize','x2+exp(t)-2','x') 无约束多维极值问题,说白了还是一种求多远函数的极值问题,常规的解法是微分类方法。在计算机处理时常用的算法如下:1.模式搜索法。2.Rosenbrock法。3.单纯性搜索法。4.Powell法。5.最速下降法(从目标函数的负梯度方向一直前进,直到到达目标函数的最低点)6.共轭梯度法。7.牛顿法,修正牛顿法,拟牛顿法。8.信赖域法。9.显式最速下降法。算法有很多,一一掌握没有必要,于是我决定对单纯型法和牛顿系列方法进行一定的了解。首先是单纯型搜索法。算法原理:通过构造单纯性来逼近极小值点,每构造一个单纯形,确定其最高点和最低点,然后通过扩展或压缩、反射构造新的单纯型,目的是使得极小值点能够包含于单纯形内。对于二维变量(用三维坐标系表示),单纯形就是一个类似于三菱柱的多面体。相关参数:以上五个字母分别表示反映系数,紧缩系数,扩展系数,收缩系数,和精度下面为了方便分别用a b c d e来表示。其中的a b c d在实际问题中需要自己去寻找,而精度则可以根

    注意事项

    本文(机械优化设计Matlab-优化工具箱基本用法(共38页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开