九年级数学上册圆圆时弧弦圆心角和圆周角配套新人教学习教案.pptx
-
资源ID:17444977
资源大小:250.34KB
全文页数:17页
- 资源格式: PPTX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
九年级数学上册圆圆时弧弦圆心角和圆周角配套新人教学习教案.pptx
会计学1九年级数学九年级数学(shxu)上册上册 圆圆 圆圆 时时 弧弦弧弦圆心角和圆周角配套圆心角和圆周角配套 新人教新人教第一页,共17页。1圆心角的定义(dngy)圆心(yunxn)(1)定义:我们(w men)把_在_的角叫做圆心角(2)特征:顶点在圆心相等相等相等2弧、弦、圆心角之间的相等关系(1)在同圆或等圆中,相等的圆心角所对的弧_,所对的弦_相等相等相等(2)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角_,所对的弦也_(3)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角_,所对的弧也_顶点第1页/共17页第二页,共17页。3圆周角的定义(dngy)顶点在_上,并且两边都_的角叫做圆周角(zhujio)圆周(yunzhu)和圆相交4圆周角定理及推论定理:在同圆或等圆中,_ 所对的圆周角相等,都等于这条弧所对的_的一半推论 1:在同圆或等圆中,如果两个_相等,它们所对的弧一定相等同弧或等弧圆心角圆周角直角推论 2:半圆(或直径)所对的圆周角是_,90的圆周角所对的弦是直径第2页/共17页第三页,共17页。5圆内接多边形同一个圆外接圆互补(h b)如果一个多边形的所有顶点都在_上,这个(zh ge)多边形叫做圆内接多边形,这个(zh ge)圆叫做这个(zh ge)多边形的_6圆内接四边形的性质圆内接四边形的对角_第3页/共17页第四页,共17页。弧、弦、圆心角的关系(gun x)例 1:如图 24115,已知O 的弦 AB 与半径(bnjng) OE,OF分别(fnbi)交于点 C,D,且 ACBD.求证:(1)OCOD;图 24115第4页/共17页第五页,共17页。思路点拨:作 OHAB 交 AB 于点 H,构造(guzo)垂径定理第5页/共17页第六页,共17页。跟踪训练1在同圆或等圆中,两个圆心角、两条弧、两条弦三组量之间,如果有一组量相等,那么(n me),它们所对应的其他量也相等如图 24116,AB,CD 是O 的两条弦图 24116CODCDCODABCDAOBABCDAOBABCDAB第6页/共17页第七页,共17页。2游乐园的大观览车半径为 26 米,如图 24117 所示,已知观览车绕圆心 O 顺时针作匀速运动(yns yndng),旋转一周用 12 分钟小丽从观览车的最低处(底面 A 处)乘车,问经过 4 分钟后,(1)试求小丽随观览车绕圆心 O 顺时针旋转的度数;(2)此时,小丽距地面 CD 的高度(god)是多少米?图 24117第7页/共17页第八页,共17页。(1)观览车绕圆心(yunxn) O 顺时针作匀速运动,旋转一周用 12 分钟,经过(jnggu) 4 分钟后,旋转了412360120.(2)如图 D25,连接(linji) OA,在 O 上取点 B,使AOB120,图 D25第8页/共17页第九页,共17页。分别(fnbi)过点 B,O 作 BFCD 于点 F,作 OEBF 于点 E.OB26,BOE120EOA30,BE13 米则 BF132639(米)答:小丽距地面(dmin) CD 的高度是 39 米第9页/共17页第十页,共17页。圆周角定理(dngl)及推论的应用例 2:如图 24118,将三角板的直角顶点(dngdin)放在 O 的圆心上,两条直角边分别交 O 于 A,B 两点,点 P 在优弧 AB 上,且与点 A,B 不重合,连接 PA ,PB.则APB_.图 24118思路点拨:本题(bnt)考查了圆周角定理的运用关键是确定同弧所对的圆心角和圆周角,利用圆周角定理即可答案:45第10页/共17页第十一页,共17页。跟踪(gnzng)训练3如图 24119 是中国共产主义青年团团旗上的图案,点 A,B,C,D,E 五等分圆,则ABCDE()A图 24119A180B150C135D120第11页/共17页第十二页,共17页。4如图 24120,已知 BD 是 O 的直径(zhjng), O 的弦 AC) BD 于点 E,若AOD60,则DBC 的度数(d shu)为(图 24120A30C50B40D60 A第12页/共17页第十三页,共17页。圆内接四边形的性质(xngzh)例 3:如图 24121,已知四边形 ABCD 内接于O, BOD80,求BAD 和BCD 的度数(d shu)图 24121第13页/共17页第十四页,共17页。思路(sl)点拨:根据圆周角定理可求出BAD 的度数再根据圆内接四边形的对角(du jio)互补可求出BCD 的度数自主(zzh)解答:BOD80,BAD40.又ABCD 是圆的内接四边形,BADBCD180.BCD140.第14页/共17页第十五页,共17页。跟踪(gnzng)训练 B5如图 24122,四边形 ABCD 是圆内接四边形,点 E)是 BC 延长线上一点(y din),若BAD105,则DCE 的大小是(图 24122A115C100B105D95第15页/共17页第十六页,共17页。6如图 24123,在O 的内接四边形 ABCD 中,BCD100130,则BOD 的度数(d shu)是_图 24123第16页/共17页第十七页,共17页。