数学专业经典书籍2.doc
【精品文档】如有侵权,请联系网站删除,仅供学习与交流数学专业经典书籍2赞02010-8-25 20:00回复2楼5数学分析(共两册) 陈纪修,於崇华, 金路著 考研常用指定教材。6数学分析教程(共两册)常庚哲,史济怀著 里面有插值与逼近初步内容,因此相对来说更适合信息与计算专业的学生。7数学分析(共三册) 徐森林,金亚东,薛春华著 感觉很清晰,不罗嗦。另外,书的符号系统和版面相当不错。8高等数学引论(共四卷) 华罗庚著 别看是“引论”,以为讲的东西似乎不是什么重要的,其实这套书(也没有完成最初的计划)的原稿是六十年代初华先生在王元先生的辅助下对科大学生开课时的讲义。那时候他们是一个教授负责一届学生的教学(另外两位负责过一届学生的是关肇直和吴文俊),所以华先生的这本书里面涉及有很多方面的知识的。也是出于一种尝试吧,华先生这书里面有一些不属于传统教学内容的东西,还包括一些应用,可以一读。作为教科书来说,内容多了,因此最好作为课外兴趣阅读。 其中前三卷(册)属于数学分析的所有内容,第四卷(册)主要介绍代数矩阵论的基本理论及其应用。 国外经典教材有:9微积分学教程(共三卷),数学分析原理(共两卷) 菲赫金哥尔茨著 不用多说,几乎每个对数学稍微了解一些的人都知道它的大名。书中很少涉及现在流行的集合论的观点,但对初学者而言毫无影响,甚至使一些概念更清晰了。书的内容也相当的翔实,每本书很厚(因此也很贵,记得好像每本五十多RMB),字号又不大。由于我们从小是学习欧美符号系统的,不习惯苏联的一套符号系统,看这本书还是很麻烦,并且还很贵,个人建议作为参考书来使用。其实连作者本人(莫斯科大学的教授,门下弟子无数,包括后来得诺贝尔经济学奖的著名数学家Kantorovitch)都承认不太合适作为教材,为此他才给出了适合做教材的后一套书,这是一个精简的版本(有所补充的是在书的最后给出了一个后续课程的简介)。 毫无疑问,这套书代表了以古典的方式处理数学分析内容(指不引入实变,泛函的观念)的最高水平,考虑到在中国的印数就以十万计,可能在世界范围内也只有Goursat的书可以与之相比了.10数学分析原理Rudin著 这本书很难,包括了基础拓扑结构,微分形式的积分等,而且作者假设很多东西你都可以看懂,所以写得很简洁,对于没有一定基础的大一新生来说,很难读懂书中所讲。不过可以拿它来当一本不错的数学分析参考,也可作为数学分析的提高用书。11数学分析(共两卷) 卓里奇著 与常见的数学分析教科书相比,本书的内容比较新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微分几何等)的基本概念、思想和方法,有关应用的内容也更加贴近现代自然科学。感觉还是喜欢9和10。12数学分析讲义 阿黑波夫,萨多夫尼奇,丘巴里阔夫著 内容与传统教科书编排顺序不同,单本的,不厚,但内容能够满足传统教学需求。书中附有用于讨论和示范性问题和习题。13数学分析(共两卷) Zorich著 经典英文数学教材系列之一,难度较大。14数学分析Apostol(阿波斯托尔)著 本书是一部现代数学名著,内容涵盖了初等微积分以及实变函数论和复变函数论等内容。自20世纪70年代面世以来,该书一直受到西方学术界、教育界的广泛推崇,并被许多知名大学指定为教材。15微积分和数学分析引论(共两卷)库朗,约翰著 又一本美国的经典数学分析书,每卷都有几个分册,内容还是很丰富的。有人认为书中的一些观点现在已经不流行了,但是从“数学分析”作为数学相关专业的一门基础课的方面来说,本书还是应该认真看看的。2010-8-25 20:00回复3楼【习题集】16吉米多维奇数学分析习题集吉米多维奇著。 还没有做就早闻其名的书,一看之后,确实不负其名望。应该说,这是本学分析的人都要做的习题集。不过题目有几千道,而且其中计算题又占绝大多数,正好而且现在市面上有各种精选本,所以大家可以做一些精选本。但大家千万要自己做,不要浮躁,不然你什么也学不到。17数学分析习题课教材第一版或数学分析解题指南第2版 林源渠, 方企勤著 两本书一样的。第一版网上有电子版。后一本书在每一节中,设有内容提要、典型例题分析,以及供学生自己做的练习题等部分,书末附有答案,对证明题的大部分给出了提示或解答。本书许多题给出了多种多样解法,某些解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩。本书的另外一大特色是:辅导怎样“答”题的同时,还通过“敲条件,举反例”等方式引导学生如何“问”问题,就是如何给自己“提问题”。18数学分析中的典型问题与方法第2版 裴礼文著 据说本书是为数学系考研量身订做的书。书中搜集了不少考研和竞赛试题,题型丰富、知识面广、难度较大,因此对思维要求较高,适合报考偏重理论的学校(如北大、南开等等)的同学使用。第二版有1000多页,比之第一版,更新了一些试题,提示也更详细了。总的来说,性价比非常高。19数学分析习题集林源渠,方企勤等 这本书和16的两本成成一套。算是很老的书。【辅导书】20数学分析八讲辛钦著 大师著作,多的不说,值得看!21数学分析:定理·问题·方法胡适耕,姚云飞著 强烈推荐这本既可作为教材又可作为辅导书的好书。本书的重点放在特别富有启发性的问题与方法上:结合800多道例题来说明节前的概要总结所指出的方法和技巧,你能从中学到很多。22数学分析原理与方法胡适耕,张显文著 模式跟上一本书一样,看问题很独到。同样既可作为教材又可作为辅导书。很喜欢老胡的风格。 23数学分析的理论、方法与技巧 邓乐斌编 重点推荐。 24在南开大学的演讲·微积分陈省身著 很早的东西了 网上下载得到,不过以上那个名字我也不太确定,反正有好几种叫法。据说好像网络上流传的版本少了一些内容?不知道少的是不是陈老的微分几何讲义。25数学分析内容、方法与技巧孙清华, 孙昊著 还行,该说到的题型都说到了。26数学分析习题课讲义(上下两册)谢惠民等编 这是一位学长的评价: 这本书有些相见恨晚的感觉,其难度与于裴礼文的书相当,甚至过之,而且习题很有代表性。它适合那些挑战北大、南开等名校的考生,就08年北大数分试题难度看,不超过此书的课后习题。本书对于诸位数分高手也是个强有力的挑战! 当然,这本书也有点“问题”。那就是课后习题没答案,只有提示(部分习题)。【提高】27数学分析的方法及例题选讲:分析学的思想、方法与技巧徐利治著 能学到不少通常辅导书上没有的好方法的书。这本书里面涵盖了少量非数学分析的内容,如不等式、组合学等。并且内容比较深刻,都是分析学里面一些基本问题的深入探讨,每个问题都是定理的形式陈列的,不过没有详细地证明。2010-8-25 20:00回复4楼 顺便提一下,徐教授的书,大多比较好,像组合学讲义就不错,书中是用现代集合的观点来写的。28数学分析中的问题和定理G.Polya(波利亚),G.Szego(舍贵)著 该书的内容非常丰富,在学习数学分析的阶段,可看第一卷的前面一半,后面就全是复变的东西了。在历史上,这是一套曾经使好几代数学家都受益匪浅的经典著作。这套书的另一个好处就是题目难归难,后面还是有答案或提示的.29数学分析问题研究与评注汪林等编著 这本书很老了,可以到图书馆借。本书主要是作者的一些研究成果和思考总结,比较典型和有代表性,要想在扎实的基础上更深一步,一定要看一看本书。类似的还有一本数学分析拾遗赵显曾著。30现代分析基础狄多涅著 这是一套二十世纪的大家们写的一整套教材的第一卷,用的术语相当"高深",可能等以后学了实变、泛函再回过头来看感觉会更好一些。31高等微积分丘成桐主编 内容主要是流形上的微积分,不仅是介绍高维上的微积分,还有场里面的几个基本公式的统一表示公式,让你从一种高的观点来“俯视”通常的微积分学。 这本书是邱先生为中国介绍翻译国外精品著作而主编的“数学翻译系列丛书”中的一部。其他的还有基础偏微分方程、分析学、有限群的线性表示、Markov过程导论等。 这些书的观点都比较高,书也很厚,但是不用担心,这里有个好处就是,西方的教科书一般注重实用和理解,所以书中会有很多例子(包括图形和特例)一步一步引出相关定理,而不是像中国的教科书,一下子就把定理(结论)都拿出来,学生难以记忆和理解推导过程。这也是国外(像美国)大学课本书比较厚的原因吧。三、“高等代数” 高等代数与数学分析并称为最重要的数学基础课程,多年来为教育界所公认。同时高等代数是数学系学生入学后最先接触到的两门专业课(另一门是数学分析)之一,学生从高等代数课程中所获得的知识与方法训练,在其后的数学学习与研究中有不可替代的作用。事实上,大学四年中遇到的几乎所有问题最终都能转化为分析和代数问题。 这门课在西方叫做“线性代数”(Linear Algebra),苏联喜欢用“高等”一词,教材上少不了这个,既然有过学老大哥的传统嘛,所以国内都这么学着称呼。其实叫“线性代数”更为贴切,因为书里面研究的几乎都是线性的理论(非线性理论那还是数学前沿研究领域,到现在也没有很丰富的成果和进展)。 高等代数主要包括三部分(书本中没有这样划分): 1)多项式理论,占15%(20%)2)线性代数(矩阵、行列式、线性方程和线性变换及一些空间理论),占80% 非数学专业学的就是这个,名字也一样。 3)群环域理论初步。占5%(0%) 也就是“近世代数”或叫“抽象代数初步”。在很多情况下,尤其是非师范类院校的数学系抽象代数初步不讲,而是另外有开设一门专门的抽象代数的课。代数课开设两学期,抽象代数开设一学期。但现在人们一般把他们看作两门不同的课程。 整体来说,书中概念和定理比较多,相对来说也很抽象。但是熟练运用这些工具之后,你就会发现解决一些问题超级方便。【教材】 国内的有:2010-8-25 20:00回复5楼43高等代数北京大学数学系代数与几何教研室代数小组 王萼芳,石生明修订 目前国内各大学尤其是综合大学数学系广泛采用的代数教材,有着悠久的传统。通常使用的是第三版。也是各大学的考研指定用书。不过对基础不好的学生在某些地方有一定的难度。讲到了所有应该讲的内容。44高等代数学 姚慕生,吴泉水编著 本书力求将几何直观与代数方法有机地结合起来,使抽象的数学概念变得更容易理解。这是第二版的,第一版作者仅有姚慕生一人。以下几本教材是网上学长们的推荐:-45高等代数张禾瑞,郝鈵新编著 被各个师范大学的数学系广泛使用,和43同分天下。作者张禾瑞已经去世。46高等代数(上下册)丘维声著 北京大学数学系94级用书,书写的不错。书中矩阵讲得不是十分深奥,但是在空间理论,具体的说一些几何化的思想上讲得还是非常清楚的,另外多项式理论那块也讲了不少。北京大学的教学内容和重点一贯与国内其他大学的不太一样,而且邱维声采用了与其他教材完全不同的编排方式,所以用这本书时也许会有一些不适应。建议用来作参考书而不是教材。47线性代数蒋尔雄,高锟敏,吴景琨著 名为线性代数,实际上是一本高等代数教材。是一本非常老的为当时计算数学专业编写的书。市面上根本找不到,但各大学的藏书中肯定会有。48高等代数周伯埙等 这就是在上海科技出版的一整套复旦数学系教材里讲高等代数的那本.图书馆里面好像有。 这本书有80%的篇幅是讲矩阵有关的理论,有大量习题。能独立把这里面的习题做完对于理解矩阵的各种各样的性质是非常有益的。 当然这不是很容易的-据说屠先生退休的时候留下这么句话:“今后如果有谁开高等代数用这本书做教材,在习题上碰到麻烦的话可以来找我。”由此可见一斑。49高等代数学张贤科,许甫华 插一句:目前有许多所谓的“简明教程”或者将代数与解析几何合在一起的课本(如线性代数与解析几何),这些教材在内容编排上不是很成熟,不建议使用。-注:以上45和48各有几处有误,已修正。P.S.丘维声的教材相配套的辅导书(习题集?)很好,只是很厚,挺恐怖的。国外教材:50代数学引论柯斯特利金著 和菲赫金哥尔茨的微积分学教程齐名的又一苏联的伟大数学著作。就一本书,不是很厚,也不贵。【习题集】51高等代数辅导与习题解答或高等代数(北大·第三版)导教·导学·导考 类似的配套书辅导,这样的配套辅导书有好多人写,随便一本都行。52高等代数习题集第2版(修订本) 法杰耶夫,索明斯基著 ; 丁寿田原译, 项观捷等修订 一本老习题集,到图书馆找找。53线性代数习题集普罗斯库列柯夫编著 同上本一样,都是前苏联的经典代数习题集。两本书分别有两千道和一千道题,做完后就不知道有什么效果了。【辅导书】54高等代数:定理·问题·方法胡适耕, 刘先忠编著 还是老胡的书,非常棒!55高等代数习题解或者高等代数精选题解杨子胥著 题目丰富,解题技巧多多,个人推荐。杨子胥同宋宝和编著了一本近世代数习题解也可以作为今后参考。56高等代数解题方法(第2版) 许甫华, 张贤科编著2010-8-25 20:00回复6楼 强烈推荐!本书和54、55都是非常好的辅导书,能学到不少的东西,最主要的是比其他什么课后习题解答之类的辅导书要好多了。【提高】57Linear Algebra(GTM23)Greub著 其实这里面更多讲的是线性代数,里面的有些章节还是值得一读的。58矩阵论甘特玛赫尔著 柯召译 矩阵研究方面的权威著作。 说到“矩阵论”,在图书馆我还经常看到一本书,那就是:59线性代数与矩阵论许以超著 比较艰深,是本好书。不管怎么样,他毕竟算是华先生的弟子的。60线性空间引论叶明训编著 武汉大学出版社的,文字符号的排版比较好,但这并不是说样子好看内容就不行。值得看看。61高等代数探究性课题集邱森, 朱林生主编 很是开拓思维,深受启发。62矩阵分析及其应用曾祥金,吴华安编著 矩阵方面做得比较好的,其中对于范数的讨论比较详细,另外还十分注重矩阵函数、矩阵微分、矩阵导数、矩阵积分等“矩阵运算”的综合应用。63近世代数观点下的高等代数陈辉著 闻书名就能答题知其详细内容。不过这书名倒是让我想起另一本(三卷)有名的书高观点下的初等数学。五、“解析几何” 也叫“空间解析几何”,其实中学阶段学了大部分解析几何的知识了,这里只是在学了线性代数或高等代数之后利用矩阵等线性代数的工具来进一步研究空间曲面和曲线的表示及其相关计算。 这门学科历史也是很悠久的,其重要性也不言而喻:数形结合从此有了基础;微积分因此才成为可能。从教学内容上说,它描述的主要是三维欧氏空间里面的一些几何元素基本常识以及相关计算,重点是不变量理论。可以说,这门理论已经把宏观宇宙空间的局部近似下的模型(欧氏空间)下的度量关系研究到极致,除非再引入新的观点(如仿射几何),否则无法再深入了。【教材】68解析几何吕根林,许子道著 经典课本。讲得十分全面,有一些内容是不作要求的。69解析几何丘维声著 可做课本。70空间解析几何学 陈受鸟(陈季略和庄曜孚之女;陈衡哲之妹;吴大任之妻;南开大学教授)著 作者这个名字打不出来。 本书内容基本上和课本差不多。书的年代比较老了。补充一句:陈受鸟是中国早期留学海外的女学者之一,其丈夫吴大任是著名物理学家吴大猷先生的堂弟。71解析几何学朱鼎勋著 还是老书。非常易懂,连二维的不变量理论也在附录里面交代得十分清楚。朱先生相当有才华,可惜英年早逝。72解析几何尤承业著 与上本差不多。73解析几何周建伟著 讲得有特点。书后还讲了一些射影几何、仿射几何等高等几何在解析几何中的部分应用。【习题集】74解析几何习题集巴赫瓦洛夫著 不容易找到。75 利用教材后的练习,以及一些辅导书后的习题。【辅导书】 以下几本是网上一个学长的推荐:-76(解析)几何学狄隆涅著 这套三卷本的大书包括了许多非常有意思的讨论,记得五年前看的时候感觉非常有意思。这位苏联科学院院士真是够能写的。2010-8-25 20:00回复7楼77解析几何学教程穆斯海里什维利著 具体的说特别值得参考的是它里面关于射影的一些观点和讲法(比如认为椭圆也是有渐近线的,只不过是"虚"的而已)。78解析几何简明教程吴光磊 写的简单明了,当参考书看,收获还是不少的。-P.S. 76里面的东西很多,还包括一些四维的表示与应用,少数画法几何里面谈到了这个。总之知识点还比较全面。【提高】79项武义基础数学讲义·向量几何,解析几何,球面几何 项武义基础数学讲义系列都应该看。 也可作为提高用书。80古典几何学项武义,潘养廉等 这书的内容与课本不是很一样,不过处理方法还是很不错的。这本书十来年前大概做过教材的。六、“概率论” 概率学的兴起最开始是源于对各种机会性游戏(如赌博)问题的研究。随着拉普拉斯的经典概率巨著分析概率论的出现,古典概率学已达到一个十分完善的地步,然而不久后的彼得堡悖论带来的对拉普拉斯的责难,启动了现代概率学的开端。 概率学里面的问题类型十分丰富,有几何概率、数论概率、代数概率、和统计概率,许多问题都很耐人寻味,众多经典的问题当中有一个就是所谓“点的问题”(也就是分赌本的问题),这个问题最初的提出者是德·梅勒。他当初问帕斯卡,后者写信把这个问题告诉了费马。而二者都独自用不同的方法解决了这个问题。这个问题的解决标志着概率学的开端。实际上,所有概率问题从本质上可以分为两类:一类所谓的“正概率”问题;另一类就是“逆概率”问题。 随着概率学的公理化和发展,问题越来越丰富和深入,统计学和随机过程逐渐与概率密不可分地结合起来。【教材】81概率论引论汪仁官82概率论基础李贤平 非常好的教材,基本不需要实变基础就可读。83概率论与数理统计陈希孺编著84概率与统计陈家鼎, 郑忠国编著 极力推荐本书和83。85概率论与数理统计盛骤,谢式千,潘承义编 浙大版的精品教材。现在一般用第三版,但我们老师说,大家都认为第二版总体上来说最好。 86概率论杨振明编87概率论教程钟开莱著网上都传这本教材不错,没看过,不过应该很好。【习题集】 至于习题集,不用做太多,书上的习题很好,课后题就行了。【提高】88测度论与概率论基础程士宏编著 适合初学者。看到“测度”一词,顺便说一下:其实很多概率问题的结果很大程度上依赖于测度(如果没有这个,很多问题没合理答案)。89概率论基础严土健, 王隽骧, 刘秀芳著 比较综合。90现代概率论基础汪嘉冈编著 用测度理论写的概率论。91分析概率论拉普拉斯著 经典概率巨著。说到这里,想起了中国清代翻译外国的概率著作决疑数学(伽罗威著),也可以看看,最好找英文本(或者白话本,如果有的话)。92概率论及其应用威廉·费勒著 经典概率学教材。93概率, 随机变量, 与随机过程 帕普里斯著 前面是针对赌博概率问题的研究,后面就进入很深奥的理论了。.精品文档.一、“数学分析” “数学分析”是数学或计算专业最重要的一门课,而且是今后数学专业大部分课程的基础,经常从一个知识点就能引申出今后的一门课,同时它也是初学时比较难的一门课。这里的“难”主要是指对数学分析思想和方法的不适应(高等数学上的方法与初等数学的方法有很大不同),其实随着学习的深入,适应了方法后,会感觉一点一点地容易起来,比如当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期(各个院校应该一样吧),学的时间也够长的 本课程主要讲的是以集合为基础而发展起来的变量和函数中的数学规律、分析与计算,是通往高等数学领域的基础工具之一。 这么多年来,国内外出现了很多非常优秀的教材和习题集以及辅导书,而且很多高校一直使用着。【教材】 国内比较好的有(仅列出主要的,排列不分先后,下同):1数学分析(共两册) 华东师范大学数学系编著 这应该是师范类使用最多的书,课后习题编排的还不错,同时这也是考研用得比较多的一本书。书的最后讲了一些流形上的微积分。虽然是师范类的书,不过还是值得一看的。2数学分析新讲(共三册) 张筑生著 很好的书,内容和高度在国内算得上是比较突出的。值得一提的是,张老师文笔清晰详细,证明深入浅出,通俗易懂。这个对初学者来说非常有帮助。 本书同时也被公认为是一本具有新观点的书,主要体现在一些经典问题处理方法上与一般的书有所不同:本书比较强调一般化,融入了一些更高的观点,如泛函、点集拓扑等。尤其精彩的是,这本书里面提供了一些问题讨论的专题附录,如Stolz定理、正交曲线坐标系中的场论计算、二项式级数在收敛区间端点的敛散情况、布劳威尔不动点定理、斯通维尔斯特拉斯逼近定理及其证明,等等。本书书在证明过程中通过技术化处理,降低了难度,容易被一般人理解。 遗憾的是书中没有课后习题,又由于书写的早,有的符号以现在的观点来看,不是很标准(按照张老师本人的说法,北大出版社找了家根本不懂怎么印数学书的印刷厂,所以版面不是很好看);另外感觉实数理论部分和含参数广义积分那章的内容写得不太全面。不过整体上本书还是瑕不掩瑜的。 张老师多年来疾病缠身,写这本书也是呕心沥血,手稿前后写了差不多五遍。像这样身患重病却为写书而兢兢业业地工作,其间所需要花费的精力可谓远非常人所能胜任的,以至于他在书的后记中也引了"都云作者痴,谁解其中味"这句曹雪芹自叹的话。不愿看到的是,张老师最终因劳累和疾病于02年去世。这也使得张老师重新修改此书的上述缺点,完善后再出新版的愿望成为不可能,这不能不说是这本书的遗憾。3数学分析(共两册) 李成章,黄玉民编 作者是南开大学数学系老师,本书也是“南开大学数学教学丛书”里的“数学分析”分册,其深度与数学分析新讲类似,每章中附有丰富的习题。还好本书关于实数完备性那几个公理的关系写的比较全面,多元微积分学和含参数广义积分写的也相当详细(这也正好补上了新讲的不足_),不过感觉级数部分还是写得不是很详细。 书里面有一些提高性的内容,可以看看。4数学分析(第3版) 欧阳光中,朱学炎,金福临,陈传璋著 普通高等教育“十一五”国家级规划教材。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,据说是用物理的观点写的,而且有的地方确实如果不听老师讲,你不知道它在说什么。虽然如此,许多大学都还是把它作为教材或研究生入学考试的指定用书。可以说,它是一本优点与缺点一样突出的老教科书。