欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    晶体三极管.doc

    • 资源ID:17622013       资源大小:531KB        全文页数:20页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    晶体三极管.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流晶体三极管.精品文档.窗体顶端窗体底端· 发新话题· 发布投票· 发布商品· 发布悬赏· 发布活动· 发布辩论· 发布视频窗体顶端问题讨论 怎么分析晶体管放大器的电路,Ib,c,e方向怎么考虑?KG5  一粒金砂 芯币310 枚 · 个人空间· 发短消息· 加为好友· 当前离线  KG5的全部文章楼主 大 中 小 发表于 2010-2-23 09:43  只看该作者 怎么分析晶体管放大器的电路,Ib,c,e方向怎么考虑?怎么分析晶体管放大器的电路,Ib,c,e方向怎么考虑? UID152033 帖子283 精华0 威望60  芯币310 枚 阅读权限10 在线时间14 小时 注册时间2009-8-24 最后登录2011-5-11 查看详细资料TOP UID49081 帖子5874 精华3 威望707  芯币5347 枚 阅读权限100 在线时间260 小时 注册时间2007-9-30 最后登录2011-6-25 查看详细资料TOP lixiaohai8211 红海 版主 芯币5347 枚 · 个人空间· 发短消息· 加为好友· 当前离线  lixiaohai8211的全部文章板凳 大 中 小 发表于 2010-2-23 18:42  只看该作者 三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件.其作用是把微弱信号放大成辐值较大的电信号, 也用作无触点开关。 什么是三极管三极管(也称晶体管)在中文含义里面只是对三个引脚的放大器件的统称,我们常说的三极管,可能是如图所示的几种器件,可以看到,虽然都叫三极管,其实在英文里面的说法是千差万别的,三极管这个词汇其实也是中文特有的一个象形意义上的的词汇电子三极管 Triode 这个是英汉字典里面“三极管”这个词汇的唯一英文翻译,这是和电子三极管最早出现有关系的,所以先入为主,也是真正意义上的三极管这个词最初所指的物品。其余的那些被中文里叫做三极管的东西,实际翻译的时候是绝对不可以翻译成Triode的,否则就麻烦大咯,严谨的说,在英文里面根本就没有三个脚的管子这样一个词汇!电子三极管 Triode (俗称电子管的一种)双极型晶体管 BJT (Bipolar Junction Transistor)J型场效应管 Junction gate FET(Field Effect Transistor)金属氧化物半导体场效应晶体管 MOS FET ( Metal Oxide Semi-Conductor Field Effect Transistor)英文全称V型槽场效应管 VMOS (Vertical Metal Oxide Semiconductor )注:这三者看上去都是场效应管,其实结构千差万别J型场效应管 金属氧化物半导体场效应晶体管 V沟道场效应管 是 单极(Unipolar)结构的,是和 双极(Bipolar)是对应的,所以也可以统称为单极晶体管(Unipolar Junction Transistor)其中J型场效应管是非绝缘型场效应管,MOS FET 和VMOS都是绝缘型的场效应管VMOS是在 MOS的基础上改进的一种大电流,高放大倍数(跨道)新型功率晶体管,区别就是使用了V型槽,使MOS管的放大系数和工作电流大幅提升,但是同时也大幅增加了MOS的输入电容,是MOS管的一种大功率改经型产品,但是结构上已经与传统的MOS发生了巨大的差异。VMOS只有增强型的而没有MOS所特有的耗尽型的MOS管 编辑本段三极管的发明1947年12月23日,美国新泽西州墨累山的贝尔实验室里,3位科学家巴丁博士、布菜顿博士和肖克莱博士在紧张而又有条不紊地做着实验。他们在导体电路中正在进行用半导体晶体把声音信号放大的实验。3位科学家惊奇地发现,在他们发明的器件中通过的一部分微量电流,竟然可以控制另一部分流过的大得多的电流,因而产生了放大效应。这个器件,就是在科技史上具有划时代意义的成果晶体管。因它是在圣诞节前夕发明的,而且对人们未来的生活发生如此巨大的影响,所以被称为“献给世界的圣诞节礼物”。另外这位科学家因此共同荣获了1956年诺贝尔物理学奖。 晶体管促进并带来了“固态革命”,进而推动了全球范围内的半导体电子工业。作为主要部件,它及时、普遍地首先在通讯工具方面得到应用,并产生了巨大的经济效益。由于晶体管彻底改变了电子线路的结构,集成电路以及大规模集成电路应运而生,这样制造像高速电子计算机之类的高精密装置就变成了现实。 编辑本段工作原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。 对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。 当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。 在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)极基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。 由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得: Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即: 1=Ic/Ib 式中:1-称为直流放大倍数, 集电极电流的变化量Ic与基极电流的变化量Ib之比为: = Ic/Ib 式中-称为交流电流放大倍数,由于低频时1和的数值相差不大,所以有时为了方便起见,对两者不作严格区分,值约为几十至一百多。 三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。三极管放大时管子内部的工作原理1、发射区向基区发射电子电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。2、基区中电子的扩散与复合电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。3、集电区收集电子由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。 编辑本段三极管的分类:a.按材质分: 硅管、锗管b.按结构分: NPN 、 PNPc.按功能分: 开关管、功率管、达林顿管、光敏管等.d. 按功率分:小功率管、中功率管、大功率管e.按工作频率分:低频管、高频管、超频管f.按结构工艺分:合金管、平面管 编辑本段三极管的主要参数 a. 特征频率fT:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作. b. 工作电压/电流用这个参数可以指定该管的电压电流使用范围. c. hFE电流放大倍数. d. VCEO集电极发射极反向击穿电压,表示临界饱和时的饱和电压. e. PCM最大允许耗散功率. f. 封装形式指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现. 编辑本段判断基极和三极管的类型三极管的脚位判断,三极管的脚位有两种封装排列形式,如右图: 三极管是一种结型电阻器件,它的三个引脚都有明显的电阻数据,测试时(以数字万用表为例,红笔+,黒笔-)我们将测试档位切换至 二极管档 (蜂鸣档)标志符号如右图: 正常的NPN结构三极管的基极(B)对集电极(C)、发射极(E)的正向电阻是430-680(根据型号的不同,放大倍数的差异,这个值有所不同)反向电阻无穷大;正常的PNP 结构的三极管的基极(B)对集电极(C)、发射极(E)的反向电阻是430-680,正向电阻无穷大。集电极C对发射极E在不加偏流的情况下,电阻为无穷大。基极对集电极的测试电阻约等于基极对发射极的测试电阻,通常情况下,基极对集电极的测试电阻要比基极对发射极的测试电阻小5-100左右(大功率管比较明显),如果超出这个值,这个元件的性能已经变坏,请不要再使用。如果误使用于电路中可能会导致整个或部分电路的工作点变坏,这个元件也可能不久就会损坏,大功率电路和高频电路对这种劣质元件反应比较明显。尽管封装结构不同,但与同参数的其它型号的管子功能和性能是一样的,不同的封装结构只是应用于电路设计中特定的使用场合的需要。要注意有些厂家生产一些不规范元件,例如C945正常的脚位是BCE,但有的厂家出的此元件脚位排列却是EBC,这会造成那些粗心的工作人员将新元件在未检测的情况下装入电路,导致电路不能工作,严重时烧毁相关联的元器件,比如电视机上用的开关电源。 在我们常用的万用表中,测试三极管的脚位排列图:先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极.当基极确定后,将黑表笔接基极,红表笔笔接其它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP.判断集电极C和发射极E,以NPN为例:把黑表笔接至假设的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头所示C,E电阻值,然后将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立.体三极管的结构和类型 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。 三极管的封装形式和管脚识别 常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律, 底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。 目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。 晶体三极管的电流放大作用 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将Ic/Ib的比值称为晶体三极管的电流放大倍数,用符号“”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。 放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数Ic/Ib,这时三极管处放大状态。 饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。 根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。 使用多用电表检测三极管 三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN结的公共极,即为三极管的基极。具体方法是将多用电表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。这样最多没量12次,总可以找到基极。 三极管类型的判别: 三极管只有两种类型,即PNP型和NPN型。判别时只要知道基极是P型材料还N型材料即可。当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN型。如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。三极管的基本放大电路基本放大电路是放大电路中最基本的结构,是构成复杂放大电路的基本单元。它利用双极型半导体三极管输入电流控制输出电流的特性,或场效应半导体三极管输入电压控制输出电流的特性,实现信号的放大。本章基本放大电路的知识是进一步学习电子技术的重要基础。 基本放大电路一般是指由一个三极管或场效应管组成的放大电路。从电路的角度来看,可以将基本放大电路看成一个双端口网络。放大的作用体现在如下方面:1放大电路主要利用三极管或场效应管的控制作用放大微弱信号,输出信号在电压或电流的幅度上得到了放大,输出信号的能量得到了加强。2输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。共射组态基本放大电路的组成共射组态基本放大电路是输入信号加在加在基极和发射极之间,耦合电容器C1和Ce视为对交流信号短路。输出信号从集电极对地取出,经耦合电容器C2隔除直流量,仅将交流信号加到负载电阻RL之上。放大电路的共射组态实际上是指放大电路中的三极管是共射组态。在输入信号为零时,直流电源通过各偏置电阻为三极管提供直流的基极电流和直流集电极电流,并在三极管的三个极间形成一定的直流电压。由于耦合电容的隔直流作用,直流电压无法到达放大电路的输入端和输出端。当输入交流信号通过耦合电容C1和Ce加在三极管的发射结上时,发射结上的电压变成交、直流的叠加。放大电路中信号的情况比较复杂,各信号的符号规定如下:由于三极管的电流放大作用,ic要比ib大几十倍,一般来说,只要电路参数设置合适,输出电压可以比输入电压高许多倍。uCE中的交流量 有一部分经过耦合电容到达负载电阻,形成输出电压。完成电路的放大作用。由此可见,放大电路中三极管集电极的直流信号不随输入信号而改变,而交流信号随输入信号发生变化。在放大过程中,集电极交流信号是叠加在直流信号上的,经过耦合电容,从输出端提取的只是交流信号。因此,在分析放大电路时,可以采用将交、直流信号分开的办法,可以分成直流通路和交流通路来分析。放大电路的组成原则:1保证放大电路的核心器件三极管工作在放大状态,即有合适的偏置。也就是说发射结正偏,集电结反偏。2输入回路的设置应当使输入信号耦合到三极管的输入电极,形成变化的基极电流,从而产生三极管的电流控制关系,变成集电极电流的变化。3输出回路的设置应该保证将三极管放大以后的电流信号转变成负载需要的电量形式(输出电压或输出电流)。 编辑本段三极管的选型与替换:1.首先要进行参数对比,如果不知道参数可以先在网络收搜索他的规格书,了解其参数。行业里大家用的多的是一个英文网站;2.知道参数,尤其是BVCBO,BVCEO,BVEBO,HFE,ft,VCEsat参数。通过各个参数的 比较,找相似的产品。即使知道了参数以后也不好找,一些书籍都过时了,没有收集新的产品进去。最近看到一个创意不错的网站,半导体百事通网 有个参数选型栏目,可以针对半导体器件的参数对照组合筛选来选型 编辑本段测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。 1: 三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管。测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表欧姆挡的等效电路。红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。 2:PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。 3:顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。(1) 对于NPN型三极管,穿透电流的测量电路。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔c极b极e极红表笔,电流流向正好与三极管符号中的箭头方向一致顺箭头,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔e极b极c极红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。 4:测不出,动嘴巴若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。其中人体起到直流偏置电阻的作用,目的是使效果更加明显。 不断地学习,才会有创新!淘宝小店:手机、qq点卡、游戏点卡自动充值 · 【XILINX 主题分享月】 信号处理资 .· 把TI芯片套装的库存彻底打扫了,连 .· 32k晶振外壳要接地?· 【公告】购买了real6410 real210的 .· MSP430FR5739+DS18B20示例· Jlink V8可以支持LM4F吗?· fr5739的uart驱动怎么无法安装好啊 .· P1REN是什么以前没接触过。置“1” .· 用IAR for MSP430的JTAG口仿真,出 .· 时钟初始化问题电子技术交流· TI技术论坛· 【TI模拟技术体验】· 【跟TI学电源】· 【MSP430】· 【最爱TI M3/M4 - Stellaris!】· 【TI C2000】· 【DSP】· 嵌入式· 【Linux】· 【WindowsCE】· 【vxworks】· 【uCOS-II】· 【我学RT-Thread】· 【ARM技术】· 【编程基础】· 单片机· 【最爱TI M3 - Stellaris!】· 【MSP430】· 【TI C2000】· 【PIC单片机】· 【51单片机】· 【stm32/stm8】· 【AVR单片机】· 【NXP LPC1000】· 【我们的Freescale!】· 【淮安信息职业技术学院学生创新单片机技术交流区】· FPGA/CPLD· 【EE_FPGA学习乐园】· 【讲座专区】· DSP· 模拟电子· 【TI模拟技术体验】· 【ADI实验室电路】· 电源技术· 【LED专区】· 【跟TI学电源】· PCB设计· RF/无线· 【Zigbee 部落】· 综合技术交流· 【测试/测量】· 【分立器件】· 【传感器】· 【764工作室】· 【Jtag客栈】创意与实践· DIY专区· 【DIY数控电源】· 【DIY专属应急灯】· 【DIY示波器】· 【DIY智能家居】· 【DIY 8M显卡】· 【DIY工具大搜捕】· 【DIY湿度计】· 【DIY光影棒】· 淘e淘· 创意市集· 竞赛专版行业应用· 消费电子· 汽车电子· 工控电子· 安防电子· 医疗电子休息一下· 聊聊、笑笑、闹闹· 【EEWORLD吉尼斯PK台】· 工作这点儿事· 为我们提建议&公告· 信息发布· 【新帖综览】· 控制面板首页· 编辑个人资料· 积分交易· 积分记录· 公众用户组· 勋章· 访问推广· 基本概况· 流量统计· 客户软件· 发帖量记录· 版块排行· 主题排行· 发帖排行· 积分排行· 交易排行· 在线时间· 管理团队· 管理统计半导体三极管的基本结构 三极管内部结构  半导体二极管内部只有一个PN结,若在半导体二极管P型半导体的旁边,再加上一块N型半导体如图5-1(a)所示。由图5-1(a)可见,这种结构的器件内部有两个PN结,且N型半导体和P型半导体交错排列形成三个区,分别称为发射区,基区和集电区。从三个区引出的引脚分别称为发射极,基极和集电极,用符号e、b、c来表示。处在发射区和基区交界处的PN结称为发射结;处在基区和集电区交界处的PN结称为集电结。具有这种结构特性的器件称为三极管。 三极管通常也称双极型晶体管(BJT),简称晶体管或三极管。三极管在电路中常用字母T来表示。因三极管内部的两个PN结相互影响,使三极管呈现出单个PN结所没有的电流放大的功能,开拓了PN结应用的新领域,促进了电子技术的发展。 因图5-1(a)所示三极管的三个区分别由NPN型半导体材料组成,所以,这种结构的三极管称为NPN型三极管,图5-1(b)是NPN型三极管的符号,符号中箭头的指向表示发射结处在正向偏置时电流的流向。 根据同样的原理,也可以组成PNP型三极管,图5-2(a)、(b)分别为PNP型三极管的内部结构和符号。 由图5-1和图5-2可见,两种类型三极管符号的差别仅在发射结箭头的方向上,理解箭头的指向是代表发射结处在正向偏置时电流的流向,有利于记忆NPN和PNP型三极管的符号,同时还可根据箭头的方向来判别三极管的类型。 例如,当大家看到“( NPN型三极管符号 )”符号时,因为该符号的箭头是由基极指向发射极的,说明当发射结处在正向偏置时,电流是由基极流向发射极。根据前面所讨论的内容已知,当PN结处在正向偏置时,电流是由P型半导体流向N型半导体,由此可得,该三极管的基区是P型半导体,其它的两个区都是N型半导体,所以该三极管为NPN型三极管。 晶体管除了PNP和NPN两种类别的区分外,还有很多种类。根据三极管工作频率的不同,可将三极管分为低频管和高频管;根据三极管消耗功率的不同,可将三极管分为小功率管、中功率管和大功率管等。常见三极管的外形如图5-3所示。      图5-3(a)和图5-3(b)都是小功率管,图5-3(c)为中功率管,图5-3(d)为大功率管。 三极管的电流放大作用 1、三极管内部PN结的结构 对模拟信号进行处理最基本的形式是放大。在生产实践和科学实验中,从传感器获得的模拟信号通常都很微弱,只有经过放大后才能进一步处理,或者使之具有足够的能量来驱动执行机构,完成特定的工作。放大电路的核心器件是三极管,三极管的电流放大作用与三极管内部PN的特殊结构有关。   从图5-1和5-2可见,三极管犹如两个反向串联的PN结,如果孤立地看待这两个反向串联的PN结,或将两个普通二极管串联起来组成三极管,是不可能具有电流的放大作用。具有电流放大作用的三极管,PN结内部结构的特殊性是: (1)为了便于发射结发射电子,发射区半导体的掺杂溶度远高于基区半导体的掺杂溶度,且发射结的面积较小。 (2)发射区和集电区虽为同一性质的掺杂半导体,但发射区的掺杂溶度要高于集电区的掺杂溶度,且集电结的面积要比发射结的面积大,便于收集电子。 (3)联系发射结和集电结两个PN结的基区非常薄,且掺杂溶度也很低。 上述的结构特点是三极管具有电流放大作用的内因。要使三极管具有电流的放大作用,除了三极管的内因外,还要有外部条件。三极管的发射极为正向偏置,集电结为反向偏置是三极管具有电流放大作用的外部条件。 放大器是一个有输入和输出端口的四端网络,要将三极管的三个引脚接成四端网络的电路,必须将三极管的一个脚当公共脚。取发射极当公共脚的放大器称为共发射极放大器,基本共发射极放大器的电路如图5-4所示。 图5-4中的基极和发射极为输入端,集电极和发射极为输出端,发射极是该电路输入和输出的公共端,所以,该电路称为共发射极电路。 图5-4中的ui是要放大的输入信号,uo是放大以后的输出信号,VBB是基极电源,该电源的作用是使三极管的发射结处在正向偏置的状态,VCC是集电极电源,该电源的作用是使三极管的集电结处在反向偏置的状态,RC是集电极电阻。 2、共发射极电路三极管内部载流子的运动情况    共发射极电路三极管内部载流子运动情况的示意图如图5-5所示。图5-5中载流子的运动规律可分为以下的几个过程。 (1)发射区向基区发射电子的过程 发射结处在正向偏置,使发射区的多数载流子(自由电子)不断的通过发射结扩散到基区,即向基区发射电子。与此同时,基区的空穴也会扩散到发射区,由于两者掺杂溶度上的悬殊,形成发射极电流IE的载流子主要是电子,电流的方向与电子流的方向相反。发射区所发射的电子由电源EC的负极来补充。 (2)电子在基区中的扩散与复合的过程 扩散到基区的电子,将有一小部分与基区的空穴复合,同时基极电源EB不断的向基区提供空穴,形成基极电流IB。由于基区掺杂的溶度很低,且很薄,在基区与空穴复合的电子很少,所以,基极电流IB也很小。扩散到基区的电子除了被基区复合掉的一小部分外,大量的电子将在惯性的作用下继续向集电结扩散。 (3)集电结收集电子的过程 反向偏置的集电结在阻碍集电区向基区扩散电子的同时,空间电荷区将向基区延伸,因集电结的面积很大,延伸进基区的空间电荷区使基区的厚度进一步变薄,使发射极扩散来的电子更容易在惯性的作用下进入空间电荷区。集电结的空间电荷区,可将发射区扩散进空间电荷区的电子迅速推向集电极,相当于被集电极收集。集电极收集到的电子由集电极电源Ec吸收,形成集电极电流IC。 3、三极管的电流分配关系和电流放大系数 根据上面的分析和节点电流定律可得,三极管三个电极的电流IE、IB、IC之间的关系为: IE=IB+IC          (5-1) 三极管的特殊结构使IC大大于IB,令 (非) =Ic/Ib        (5-2) 称为三极管的直流电流放大倍数。它是描述三极管基极电流对集电极电流控制能力大小的物理量,非大的管子,基极电流对集电极电流控制的能力就大。 是由晶体管的结构来决定的,一个管子做成以后,该管子的 非就确定了。 三极管的共射特性曲线 三极管的特性曲线是描述三极管各个电极之间电压与电流关系的曲线,它们是三极管内部载流子运动规律在管子外部的表现。三极管的特性曲线反映了管子的技术性能,是分析放大电路技术指标的重要依据。三极管特性曲线可在晶体管图示仪上直观地显示出来,也可从手册上查到某一型号三极管的典型曲线。 三极管共发射极放大电路的特性曲线有输入特性曲线和输出特性曲线,下面以NPN型三极管为例,来讨论三极管共射电路的特性曲线。    1、输入特性曲线 输入特性曲线是描述三极管在管压降UCE保持不变的前提下,基极电流iB和发射结压降uBE之间的函数关系,即 ib=f(ube)|uce=const        (5-3) 三极管的输入特性曲线如图5-6所示。由图5-6可见NPN型三极管共射极输入持性曲线的特点是: (1)在输入特性曲线上也有一个开启电压,在开启电压内,uBE虽己大于零,但iB几乎仍为零,只有当uBE的值大于开启电压后,iB的值与二极管一样随uBE的增加按指数规律增大。硅晶体管的开启电压约为0.5V,发射结导通电压Von约为0.60.7V;锗晶体管的开启电压约为0.2V,发射结导通电压约为0.20.3V。 (2)三条曲线分别为UCE=0V,UCE=0.5V和UCE=1V的情况。当UCE=0V时,相当于集电极和发射极短路,即集电结和发射结并联,输入特性曲线和PN结的正向特性曲线相类似。当UCE=1V,集电结已处在反向偏置,管子工作在放大区,集电极收集基区扩散过来的电子,使在相同uBE值的情况下,流向基极的电流iB减小,输入特性随着UCE的增大而右移。当UCE>1V以后,输入特性几乎与UCE=1V时的特性曲线重合,这是因为VcclV后,集电极已将发射区发射过来的电子几乎全部收集走,对基区电子与空穴的复合影响不大,iB的改变也不明显。 因晶体管工作在放大状态时,集电结要反偏,UCE必须大于l伏,所以,只要给出UCE=1V时的输入特性就可以了。 2、输出特性曲线 输出特性曲线是描述三极管在输入电流iB保持不变的前提下,集电极电流iC和管压降uCE之间的函数关系,即 ic=f(uce)|ib=const(5-4)  三极管的输出特性曲线如图5-7所示。由图5-7可见,当IB改变时,iC和uCE的关系是一组平行的曲线族,并有截止、放大、饱和三个工作区。 (1)截止区 IB=0持性曲线以下的区域称为截止区。此时晶体管的集电结处于反偏,发射结电压uBE0,也是处于反偏的状态。由于iB0,在反向饱和电流可忽略的前提下,iC=iB也等于0,晶体管无电流的放大作用。处在截止状态下的三极管,发射极和集电结都是反偏,在电路中犹如一个断开的开关。 实际的情况是:处在截止状态下的三极管集电极有很小的电流ICE0,该电流称为三极管的穿透电流,它是在基极开路时测得的集电极-发射极间的电流,不受iB的控制,但受温度的影响。 (2)饱和区 在图5-4的三极管放大电路中,集电极接有电阻RC,如果电源电压VCC一定,当集电极电流iC增大时,uCE=VCC-iCRC将下降,对于硅管,当uCE 降低到小于0.7V时,集电结也进入正向偏置的状态,集电极吸引电子的能力将下降,此时iB再增大,iC几乎就不再增大了,三极管失去了电流放大作用,处于这种状态下工作的三极管称为饱和。 规定UCEUBE时的状态为临界饱和态,图5-7中的虚线为临界饱和线,在临界饱和态下工作的三极管集电极电流和基极电流的关系为:          Ics=Vcc-Uces/Rc=(非)Ibs(5-1-4) 式中的ICS,IBS,UCES分别为三极管处在临界饱和态下的集

    注意事项

    本文(晶体三极管.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开