欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    机械系统动力学阅读总结.doc

    • 资源ID:17630297       资源大小:130.50KB        全文页数:4页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    机械系统动力学阅读总结.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流机械系统动力学阅读总结.精品文档.机械系统动力学笔记第一章绪论第二节 离散系统与连续系统离散系统:具有集中参数元件组成的系统。连续系统:由分布参数元件组成的系统。第三节 线性系统与非线性系统系统按照数学模型是否线性可分,分为线性系统和非线性系统。所谓线性系统是指能用线性微分方程所表示的系统。当系统质量不随运动参数而变化,并且系统弹性力和阻尼力可以为线性时,可用线性方程来表示,如:是两阶齐次线性方程,表示线性系统。凡不能简化为线性系统的动力学系统都称为非线性系统,如:。 线性系统很重要的特征是能够满足迭加原理。即:对于同时作用于系统的两个不同的输入,所产生的输出是这两个输入单独作用于系统所产生的输出之和。第二章 两自由度系统的振动第一节 两自由度系统无阻尼的自由振动耦合:当质量矩阵的非对角线元素不为零时,称为惯性耦合或动力耦合;刚度矩阵的非对角元素不为零时称为弹性耦合或静力耦合。固有频率:使系统振动微分方程有非零解时的频率。只由系统的本身结构和特性决定。两自由度系统有两个固有频率。主振型:当系统按某一阶固有频率振动时其振幅比也由系统的固有特性来决定,与外界的初始条件无关,这说明了振幅比是常数,即系统在振动过程中各点的相对位置是确定的,由此振幅比所确定的振动形态与固有频率一样,也是系统的固有特性,所以通常称为主振型或固有振型,第二节 两自由度系统无阻尼的强迫振动系统的强迫振动是与简谐干扰同频率的简谐振动,其振幅的大小取决于系统本身的物理特性和激振力的幅值以及激振力的频率,而与初始条件无关。系统的共振频率即为相应的主振型。第三节 两自由度系统阻尼的强迫振动简谐力激励情况下的系统稳定振动仍然是简谐振动。第三章 多自由度系统的振动第一节 多自由度系统的振动微分方程1、 用牛顿定律或定轴转动方程来建立方程2、 拉氏方程来建立振动微分方程3、 用刚度影响系数法来建立振动微分方程4、 用柔度影响系数法建立系统的振动微分方程。第二节 多自由度系统的自由振动主振动:系统中各振动质量按同一阶固有频率所作的振动。主振型:系统按照某一阶固有频率作主振动时,其各振动质量的振幅比作为一组合称为主振型。振型矩阵:设n个自由度系统的n个主振型。将这些主振型按照次序依次排列,构成一个n阶矩阵,这个矩阵称为振型矩阵(模态矩阵),即由主振型列向量构成的矩阵。 振型矩阵有个重要的数学性质,就是用其转置左乘系统质量矩阵,再用振型矩阵右乘所得之积,可使质量矩阵成为一对角矩阵。对于刚度矩阵有相同的效果。正则矩阵:将振型矩阵的各阶主振型分别乘以不同的系数,则得到正则矩阵。正则矩阵的重要性质:其转置矩阵左乘质量矩阵再用正则矩阵右乘所得的积。主坐标:振型矩阵的逆矩阵左乘几何坐标。正则坐标:正则矩阵的逆矩阵左乘几何坐标。微分方程解耦:用主坐标或者正则坐标表示的运动微分方程既无静力耦合,又无动力耦合。变成为n个单自由度系统方程。综上所述,求解系统响应过程步骤:1、 建立系统振动微分方程。2、 计算系统无阻尼时固有频率、特征向量、主振型以及系统振型矩阵。3、 计算系统正则因子和正则矩阵。4、 利用正则矩阵对系统振动方程去耦,使之成为正则方程并写出方程的正则解。5、 对原几何坐标初始响应进行坐标变换,使之成为正则初始条件,求出正则响应。6、 对正则响应进行坐标变换,使之成为原坐标表示的系统响应。第二节 多自由度系统的阻尼强迫振动阻尼矩阵的简化: 当系统存在阻尼时,其运动微分方程中的阻尼矩阵如果不是对角矩阵,就无法解耦。所以在工程实际中常假设原阻尼矩阵是与质量矩阵和刚度矩阵成正比,即称为比例阻尼。该矩阵可以用正则矩阵或振型矩阵解耦。 当系统的阻尼系数与质量和弹簧刚度不成正比例时,称为一般粘性阻尼,此时一般不能去耦,经正则化处理后仍为一非对角线矩阵。实用上,将非对角线元素取做零,称为正则振型阻尼矩阵。第四节 多自由度系统振动的计算机解法子空间迭代法:该方法适用于求解前几阶特征值和特征向量。这种方法是假设r个初始向量同时进行迭代,以求得前s个特征值和特征向量。一方面它是里茨法的反复运用,另一方面,又可看作是矩阵迭代法的推广。里茨法的最后结果与它所假设的初始向量有关,而要选择较好的初始向量,往往是很困难的,同时,这种方法的误差也难以估计,但子空间迭代法则基本上可以任意假设初始向量。此外,子空间迭代法的收敛性又优于矩阵迭代法。雅可比方法:该方法可用来求全部固有频率和主振型,这属于一种变换的方法。雅可比方法是运用迭代的思想来构造振型矩阵。传递矩阵法:用传动矩阵法进行振动分析时,只需要对一些阶次很低的传递矩阵进行连续的矩阵乘法运算,在数值求解时,只需计算低阶次的传递矩阵和行列式值;第四章 弹性体系统的振动第一节 弹性体动力学分析的有限单元法有限元法的基本思想是将一个连续弹性体看成是由若干个基本单元在结点彼此相连接的组合体,从而使一个无限自由度的连续体问题变成一个有限自由度的离散系统问题。

    注意事项

    本文(机械系统动力学阅读总结.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开