欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    王镜岩第三版生物化学下册课后习题答案.doc

    • 资源ID:17664387       资源大小:215KB        全文页数:29页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    王镜岩第三版生物化学下册课后习题答案.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流王镜岩第三版生物化学下册课后习题答案.精品文档.糖蛋白中寡糖与多肽链的连接形式有几种类型? 答:糖蛋白中寡糖与多肽链的,简称糖肽键。糖肽链的类型可以概况为:N-糖苷键型:寡糖链(GlcNAC的-羟基)与Asn的酰胺基、N-未端的a-氨基、Lys或Arg的W-氨基相连。 O-糖苷键型:寡糖链(GalNAC的-羟基)与Ser、Thr和羟基赖氨酸、羟脯氨酸的羟基相连。 S-糖苷键型:以半胱氨酸为连接点的糖肽键。 酯糖苷键型:以天冬氨酸、谷氨酸的游离羧基为连接点。N-连寡糖和O-连寡糖的生物合成有何特点? 答:N-连寡糖和O-连寡糖的生物合成特点分别是N-糖链的合成是和肽链的生物合成同时进行的,而O-糖链的合成是在肽链合成后,对肽链进行修饰加工时将糖基逐个连接上去的。第34章 DNA的复制和修复生物的遗传信息如何由亲代传给子代?答:在细胞分裂间期,DNA分子边 解旋边复制,分别以亲代DNA的两条母链为模板,以核中游离的脱氧核苷酸为原料,根据碱 基互补配对原则,合成两条子链,它们分别与相应的模板链螺旋化就形成了两个与亲代DNA 一样的子代DNA,在生物传种接代的过程中,亲代将复制出的一份DNA通过配子传给子代,从 而实现了亲子代间遗传信息的传递。接下来,在子代个体发育的过程中,将利用DNA(gene)来指导自身蛋白质的合成,从而表现出与 亲代相似的性状。也有一些生物如某些病毒,是通过将亲代的RNA复制后传给子代的方式进行遗传信息的传递。何谓DNA的半保留复制?是否所有的DNA复制都以半保留的方式进行?(双链DNA通常都以半保留方式复制。)答:DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制(semiconservative replication)。并非所有的DNA复制都以半保留的方式进行,但双链DNA通常都以半保留方式复制。若使15N标记的大肠杆菌在14N培养基中生长三代,提取DNA,并用平衡沉降法测定DNA密度,其14N-DNA分子与14N-15N杂合DNA分子之比应为多少?答:这两者之比为1:3。比较DNA聚合酶、和性质的异同。DNA聚合酶和的功能是什么?有何生物学意义? 答:在E.coli中,共发现了3种DNA聚合酶,即DNA聚合酶、。DNA聚合酶是个多功能酶,具有5- 3聚合功能;3- 5外切功能以及3- 5外切功能。DNA聚合酶与DNA聚合酶功能相似,但没有5- 3外切功能。DNA聚合酶与DNA聚合酶功能相同,但其聚合活性比DNA聚合酶高1000倍,是E.coliDNA复制中的最主要酶。 DNA聚合酶和是在1999年才被发现的,它涉及DNA的错误倾向修复(errorprone repair)。当DNA受到较严重损伤时, 即可诱导产生这两个酶,使修复缺乏准确性(accuracy),因而出现高突变率。其生物学意义在于高突变率虽会杀死许多细胞,但至少可以克服复制障碍, 使少数突变的细胞得以存活。DNA复制的精确性、持续性和协同性是通过怎样的机制实现的?答:DNA聚合酶由10个亚基组成,这些亚基将催化DNA合成、校对和夹位DNA等功能有机地组合在一起,保证了DNA复制的精确性、持续性和协同性。何谓DNA的半不连续复制?何谓冈崎片断?试述冈崎片断合成的过程?答:DNA的双螺旋结构中的两条链是反向平行的,当复制开始解链时,亲代DNA分子中一条母链的方向为53,另一条母链的方向为35。DNA聚合酶只能催化53合成方向。在以35方向的母链为模板时,复制合成出一条53方向的前导链,前导链的前进方向与复制叉的行进方向一致,前导链的合成是连续进行的。而另一条母链仍以35方向作为模板,复制合成一条53方向的随从链,因此随从链会成方向是与复制叉的行进方向相反的。随从链的合成是不连续进行的,先合成许多片段,即冈崎片段。最后各段再连接成为一条长链。由于前导链的合成连续进行的,而随从链的合成是不连续进行的,所以从总体上看DNA的复制是半不连续复制。DNA复制时,在滞后链上,较短的DNA片段(大约1000-2000个核苷酸)是在分段合成引物的基础上,非连续合成的,这些不连续的DNA片段最先由日本科学家冈崎在电子显微镜下发现,故称为冈崎片断(Okazaki fragment)。引发体在滞后链上沿5'3'方向不停的移动(这是一种相对移动,也可能是滞后链模板在移动),在一定距离上反复合成RNA引物。DNA聚合酶从RNA引物的3,-OH 端合成冈崎片段。DNA复制时双链是如何解开的?比较类型和类型拓扑异构酶的作用特点和生理功能。答:DNA复制起始的体外实验表明需要6种蛋白,Dna A、Dna B、Dna C、组蛋白样蛋白(HU)回旋酶及单链结合蛋白(SSB)形成起始复合物。Dna A单体首先结合到复制起始点上4个含9 bp的重复顺序上。然后2040个Dna A单体结合到复制起始点形成一个核心。在Dna A蛋白的作用下位于复制起始点右侧的3个含13 bp的重复顺序开始解链形成开放复合体。Dna B/Dna C在复制起始区充当了起始的引发体(primosome)。Dna B?Dna C复合体转变为Dna B六聚物,形成复制叉。Dna B提供解旋酶(helicase)活性,使DNA解旋,可能它识别复制叉上潜在的单链结构,从13 bp的重复顺序上取代出Dna A,并开始解螺旋。Dna B在复制起始区域以很少的量(12六聚物)担负着催化作用。在那儿Dna B还具有激活Dna G引发酶的能力。解旋反应还需要另外两种蛋白,旋转酶(Gyrase)和SSB(单链结合蛋白)。旋转酶也就是Top ,其作用是解旋,即让一条链绕着另一条链旋转。若没有这步反应,解开双链就会产生DNA的扭曲。SSB可使已形成的单链处于稳定状态。拓扑异构酶(Topo ),将环状双链DNA的一条链切开一个口,切口处链的末端绕螺旋轴按照松弛超螺旋的方向转动,然后再将切口封起。拓扑酶I松弛超螺旋不需ATP参与。拓扑异构酶(Topo ),它的作用特点是切开环状双链DNA的两条链,分子中的断端经切口穿过而旋转,然后封闭切口。Topo 在ATP参与下,将DNA分子从松弛状态转变为负超螺旋,为DNA分子解链后进行复制及转录作好准备。天然双链闭环DNA(cccDNA)的比超螺旋()为-0.05,复制时解螺旋酶将双链撑开,如果反应系统中无旋转酶,当比超螺旋达到+0.05时,DNA的扭曲张力将阻止双链解开,此时已解开的双链占DNA分子的百分数是多少?答:此时已解开的双链占DNA分子的百分数是9.52%。何谓复制体?试述其主要成分的功能。答:与DNA复制有关的酶和蛋白质因子由30多种,他们在复制叉上形成离散的复合物,彼此配合,进行高度精确的复制,这种结构称为复制体。复制体的主要成分有,Dna A、Dna B、Dna C、组蛋白样蛋白(HU)回旋酶、单链结合蛋白(SSB)、引物合成酶、RNA聚合酶、DNA旋转酶,Dam甲基化酶以及DNA聚合酶等。复制体在DNA复制叉上进行的基本活动包括: 双链的解开,RNA引物的合成,DNA链的延长,切除引物,填补缺口,连接相邻的DNA片断,切除和修复尿嘧啶和错配碱基。DNA的复制过程可分为哪几个阶段?其主要特点是什么?复制的起始是怎样控制的?答:DNA的复制过程包括复制的起始、延伸和终止三个阶段。(1)复制的起始引发:当DNA的双螺旋解开后,合成RNA引物。引发体沿着模板链53方向移动(与冈崎片段合成的方向正好相反,而与复制叉移动的方向相同),移到一定位置上即可引发RNA引物的合成。(2)DNA链的延伸前导链只需要一个RNA引物,后随链的每一个冈崎片段都需要一个RNA引物,链的延长反应由DNA pol.催化。复制体沿着复制叉方向前进合成DNA。DNA pol的5, 3,外切活力,切除RNA引物。DNApol的5, 3,合成活性补齐缺口。DNA ligase,动物、真核由ATP供能,原核由NAD供能。(3)DNA合成的终止环状DNA、线性DNA,复制叉相遇即终止。DNA复制的调控主要是起始阶段的调控。原核生物DNA复制的调控与其生长环境有关,真核生物DNA复制的调控与细胞周期蛋白等多种蛋白质因子有关,机制十分复杂,但复制起始点必须全甲基化后复制才能发生。真核生物DNA聚合酶有哪几种?它们主要功能是什么? 答:真核生物DNA聚合酶有、等五种。 真核生物的DNA复制是在DNA聚合酶与DNA聚合酶互配合下催化进行的,还有一些酶及蛋白质因子参与反应。DNA Pol与引发酶共同起引发作用,然后由DNA Pol催化前导链及随从链的合成。在链的延长中,有 PCNA(增殖细胞核抗原)参与,保障连续性DNA Pol的性质与DNA Pol有相似之处,在有些情况下,它可代替 DNA Pol起作用,例如在DNA损伤时,催化修复合成。DNA Pol是线粒体中DNA复制酶。 DNA Pol及均有外切酶活性,因此也有编辑功能,校正复制中的错误。它们的53外切酶活性可能在切除引物RNA中有作用。真核生物 DNA聚合酶的主要功能见下表:酶活性 53聚合作用 35外切作用 e细胞内定位功能核复制、引发核修复线粒体复制核复制核复制真核生物染色体DNA的端粒有何功能?它们是如何合成的? 答:真核生物线形染色体的末端具有一种特殊的结构,称为端区或端粒。端区结构中有核苷酸重复序列,一般在一条链上为TxGy,互补链为CyAx,x与y大约在1-4范围内,人的端粒区含有TTAGGG重复序列。端区具有保护 DNA双链末端,使其免遭降解及彼此融合的功能。端区的平均长度随着细胞分裂次数的增多及年龄的增长而变短,可导致核生物染色体稳定性下降,并导致衰老。其分子机制在于,线形DNA分子不能从末端核苷酸外合成RNA引物,如此染色体将逐代缩短。但是在生殖细胞、胚胎细胞和肿瘤细胞中,由于有端粒酶,所以并不出现这种情况。端粒酶是一种由 RNA和蛋白质组成的酶,RNA和蛋白质都是酶活性必不可少的组分。可看作是一种反转录酶。此酶组成中的RNA可作为模板,催化合成端区的DNA片段。端粒酶催化合成端区,在保证染色体复制的完整性上有重要意义。哪些因素能引起DNA损伤?生物机体是如何修复的?这些机制对生物机体有何意义?答:一些物理化学因子如紫外线、电离辐射和化学诱变剂均可引起DNA损伤,破坏其结构与功能。然而在一定条件下,生物机体能使这种损伤得到修复。紫外线可使DNA分子中同一条链上两个相邻的胸腺嘧啶碱基之间形成二聚体(TT),两个T以共价键形成环丁烷结构。CT、CC间也可形成少量二聚体(CT、CC),使复制、转录受阻。细胞内具有一系列起修复作用的酶系统,可以除去DNA上的损伤,恢复DNA的双螺旋结构。目前已知有4种酶修复系统:光复活、切除修复、重组修复、SOS反应诱导的修复,后三种不需要光,又称为暗修复。1.直接修复1949年已发现光复活现象,可见光(最有效400nm)可激活光复活酶,此酶能分解由于紫外线形成的嘧啶二聚体。高等哺乳动物没有此酶。2.切除修复在一系列酶的作用下,将DNA分子中受损伤部分切除,并以完整的那一条链为模板,合成出切去部分,DNA恢复正常结构。3.结构缺陷的修复:(1)核酸内切酶识别DNA损伤部位,在其附近将其切开。(2)核酸外切酶切除损伤的DNA。(3)DNA聚合酶修复。(4)DNA连接酶连接。 4.无嘌呤无嘧啶碱基缺陷或错配脱碱基(N-糖苷酶):甲基磺酸甲酯可使鸟嘌呤第7位氮原子烷基化,活化-糖苷键,造成脱嘌呤作用;酸也能使DNA脱嘌呤。DNA复制时,DNA聚合酶对dTTP和dUTP分辨力不高,有少量dUTP掺入DNA链。细胞中的尿嘧啶-N-糖苷酶可以切掉尿嘧啶。腺嘌呤脱氨形成次黄嘌呤时也可以被次黄嘌呤-N-糖苷酶切掉次黄嘌呤。对于无嘌呤无嘧啶的损伤有两种修复方法:(1)AP核酸内切酶切开,核酸外切酶切除,DNA聚合酶修复,DNA连接酶连接。(2)插入酶插入正确碱基。5.重组修复切除修复发生在DNA复制之前,而当DNA发动复制时尚未修复的损伤部位,可以先复制,再重组修复。在重组修复过程中,DNA链的损伤并未除去。重组修复至少需要4种酶组分。重组基因recA编码一种分子量为40000的蛋白质,它具有交换DNA链的活力。RecA蛋白被认为在DNA重组和重组修复中均起关键作用。recB、recC基因分别编码核酸外切酶V的两个亚基。此外,修复合成还需要DNA聚合酶和连接酶。6.易错修复和应急反应(SOS反应)诱导修复是细胞DNA受到严重损伤或DNA复制系统受到抑制的紧急情况下,为求得生存而出现的一系列诱导性修复。SOS反应诱导的修复系统包括避免差错的修复(无差错修复)和易错的修复。避免差错的修复:SOS反应能诱导光复活切除修复和重组修复中某些关键酶和蛋白质的产生,从而加强光复活切除修复和重组修复的能力,这属于避免差错的修复。易错的修复:SOS反应还能诱导产生缺乏校对功能的DNA聚合酶,它能在DNA损伤部位进行复制而避免了死亡,可是却带来了高的突变率,这属于易错的修复。SOS反应是由RecA蛋白和LexA阻遏物相互作用引起的。RecA蛋白不仅在同源重组中起重要作用,而且它也是SOS反应的最初发动因子。在有单链DNA和ATP存在时,RecA蛋白被激活而表现出蛋白水解酶的活力,它能分解噬菌体的阻遏蛋白和LexA蛋白。LexA蛋白(22Kd)许多基因的阻遏物,当它被RecA的蛋白水解酶分解后就可以使一系列基因得到表达其中包括紫外线损伤的修复基因uvrA、uvrB、uvrC(分别编码核酸内切酶的亚基)以及recA和lexA基因本身,还有单链结合蛋白基因ssb,与噬菌体DNA整合有关的基因himA、与诱变作用有关的基因umuDC,与细胞分裂有关的基因sulA,ruv,和lon,以及一些功能不清楚的基因dinA,B,D,F等。DNA的修复机制对保证遗传信息在传递过程中的忠实性,连续性具有重要的意义。何谓应急反应(SOS)和易错修复?它们之间是什么关系?SOS反应对生物机体有何意义?答:诱导修复是细胞DNA受到严重损伤或DNA复制系统受到抑制的紧急情况下,为求得生存而出现的一系列诱导性修复。SOS反应诱导的修复系统包括避免差错的修复(无差错修复)和易错的修复。避免差错的修复:SOS反应能诱导光复活切除修复和重组修复中某些关键酶和蛋白质的产生,从而加强光复活切除修复和重组修复的能力,这属于避免差错的修复。易错的修复:SOS反应还能诱导产生缺乏校对功能的DNA聚合酶,它能在DNA损伤部位进行复制而避免了死亡,可是却带来了高的突变率,这属于易错的修复。易错修复是应急反应(SOS)中的一种。SOS反应广泛存在于原核生物和真核生物,它为生物在极为不利的环境中求得生存提供了机会。何谓突变?突变与细胞癌变有何联系?答:基因突变是指由于DNA碱基对的置换、增添或缺失而引起的基因结构的变化,亦称点突变。在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。在生产上人工诱变是产生生物新品种的重要方法。 根据基因结构的改变方式,基因突变可分为碱基置换突变和移码突变两种类型。基因突变有可能破坏DNA复制和细胞分裂的正常调控机制,引起细胞癌变。DNA复制时两条链发生错配的概率是否相等?两条链错配修复的概率是否相等?答:DNA复制时两条链发生错配的概率不相等。两条链错配修复的概率也不相等。为什么引起SOS反应的化合物通常都是致癌剂?答:由于癌变有可能是通过SOS反应诱变造成的,因此能引起SOS反应的化合物通常都具有致癌作用。试述Ames试验的原理。答:BNAmes等经十余年努力,于1975年建立并不断发展完善的沙门氏菌回复突变试验,亦称Ames试验。该法比较快速、简便、敏感、经济,且适用于测试混合物,反映多种污染物的综合效应。Ames试验的原理是:鼠伤寒沙门氏菌(Salmonella typhimurium)的组氨酸营养缺陷型(his)菌株,在含微量组氨酸的培养基中,除极少数自发回复突变的细胞外,一般只能分裂几次,形成在显微镜下才能见到的微菌落。受诱变剂作用后,大量细胞发生回复突变,自行合成组氨酸,发育成肉眼可见的菌落。某些化学物质需经代谢活化才有致变作用,在测试系统中加入哺乳动物微粒体酶,可弥补体外试验缺乏代谢活化系统之不足。鉴于化学物质的致突变作用与致癌作用之间密切相关,故此法现广泛应用于致癌物的筛选。第35章 DNA的重组DNA重组有何生物学意义?是否可以说没有DNA重组就没有生物进化?答:DNA分子内或分子间发生遗传信息的重新组合,称为遗传重组。DNA重组能迅速增加群体的遗传多样性,使有利突变与不利突变分开,通过优化组合积累有意义的信息。DNA重组参与许多重要的生物化学过程,为DNA损伤或自制障碍提供修复机制。某些基因的表达受DNA重组的调节。基因发育过程也受到基因加工的控制。另外,DNA重组对生物进化起着关键性作用。可以说没有DNA重组就没有生物进化。是分析DNA复制 、修复和重组三者之间的关系。答:DNA复制是DNA修复和重组的基础,修复保证了DNA复制的准确性,重组是修复的方式之一。DNA重组可分为哪几种类型?它们的主要特点是什么?答:DNA重组有3种类型,分别是同源重组、特异位点重组和转座重组。同源重组发生是依赖大范围的DNA同源序列的联会。重组过程中,两个染色体或DNA分子交换对等的部分。其特点是:需要重组的蛋白质参与;蛋白质因子对DNA碱基序列的特异性要求不高;真核生物染色质的状态影响重组的频率。特异位点重组的特点:重组依赖于小范围同源序列的联会,发生精确的断裂、连接,DNA分子并不对等交换。转座重组的特点:完全不依赖于序列间的同源性而使一段DNA序列插入另一段中,但在形成重组分子时往往是依赖于DNA复制而完成重组过程。什么是同源重组?它有何功能?答:同源重组又叫一般性重组,它是由两条同源区的DNA分子,通过配对、链的断裂和再连接,而产生片段交换的过程。同源重组的功能是在减数分裂中使四联体某些位置的非姊妹染色单体之间可以发生交换。简要说明Holliday模型。 答:一对同源染色体有4个染色单体,每一染色单体是一条DNA双链,所以一对同源染色体有4条DNA双链。在晚偶线期和早粗线期染色体配对时,同源非姊妹染色单体的DNA分子配合在一起;核酸内切酶识别DNA分子上的相应断裂点(breakage point),在断裂点的地方把磷酸二酯键切断,使两个非姊妹DNA分子各有一条链断裂;两断链从断裂点脱开,螺旋局部放松,单链交换准备重接;在连接酶的作用下,断裂以交替方式跟另一断裂点相互联结,形成一个交联桥(cross-bridge),这结构又称Holliday中间体(Holliday intermediate);这交联桥不是静态的,可以靠拉链式活动沿着配对DNA分子向左右移动,其中互补碱基间形成的氢键从一条亲本链改为另一条亲本链,于是移动后在两个亲本DNA分子间留下较大片段的异源双链DNA,这种结构又称为Holliday结构;随后这交联桥的两臂环绕另外两臂旋转成为十字形,并在交联部分断开,消除交联体,恢复为两个线性DNA分子,即形成Holliday结构的异构体;断开方向或沿东西轴进行,或沿南北方向进行;如沿东西方向切断,即上连、下连,则产生的两个异源双链的两侧基因为AB和ab,仍保持亲代类型,如沿南北方向切割,即左连、右连,则两侧基因为Ab和aB,产生两个重组类型,但不论是那种情况,即Holliday结构断裂是否导致旁侧遗传标记的重组,它们都含有一个异源双链DNA区,有关的两核苷酸区段分别来自不同的亲本,从而由原来的G-C、A-T配对变为G-A、C-T非配对。细菌基因转移有哪几种方式?它们有何生物学意义?答:细菌的基因转移方式有转化、转导、溶原性转换、接合和原生质体融合等五种方式。细菌可通过细胞间基因转移,并通过基因重组以适应随时改变的环境。参与同源重组主要的酶和辅助因子有哪些?简要说明其作用机制。答:参与同源重组主要的酶和辅助因子有:Rec A蛋白、Rec BCD酶、Ruv A 蛋白、Ruv B 蛋白、Ruv C 蛋白、DNA 聚合酶和DNA连接酶。Rec A蛋白,能促使两个同源DNA分子的碱基配对,形成杂种分子。Rec A蛋白首先与单链DNA结合(约每分子可结合个核苷酸),形成一条DNA蛋白质细丝(需消耗ATP)。于是Rec A蛋白即被活化而可将双螺旋解旋和分离,同时企图将它结合的单链与被解旋区域退火,如此继续下去,直到找到互补顺序。只要一旦有一小部份被真正“退火”,ATP供应的能量就会继续驱使配对反应趋于完成,其方向是(单链部分)。当新的杂交双链形成时,Rec A蛋白即从原来的单链掉下来。Rec BCD酶首先结合在又螺旋的游离端上,然后利用ATP供给的能量沿着双螺旋向前推进。在其行经之处,一路上解旋并又复旋。但由于解旋的速度快于复旋速度,所以解旋的双链区就越来越长。Ruv A 蛋白识别 Holliday联结体的交叉点,Ruv A 蛋白四聚体结合其上形成四方平面的构象,使得分支点易于移动,Ruv A蛋白还帮助Ruv B 蛋白六聚体环结合在双链DNA上。Ruv B是一种解旋酶,可推动分支移动。同源重组最后由Ruv C可将Holliday联结体切开,并由DNA 聚合酶和DNA连接酶进行修复合成。何谓特异位点重组?其作用特点是什么?答:位点专一性重组 这类重组在原核生物中最为典型。它发生在特殊的序列对之间,这种重组依赖于小范围同源序列的联会。在重组对之间的短的同源序列是供重组蛋白识别用的,它对同源性的要求不象同源性重组那么重要,蛋白质和DNA、蛋白质和蛋白质之间的作用更为关键。重组时发生精确的切割、连接反应,DNA不失去,不合成。两个DNA分子并不交换对等的部分,有时是一个DNA分子整合到另一个DNA分子中,因此又将这种形式的重组称为整合式重组(integrative recombination)。例如l噬菌体DNA通过其att位点和大肠杆菌DNA的attB位点之间专一性重组而实现整合过程。在重组部分有一段15 bp的同源序列,这一同源序列是重组的必要条件,但不是充分条件,还须位点专一性的蛋白质因子参与催化。这些蛋白质因子不能催化其他任何两条不论是同源的还是非同源序列间的重组,这就保证了l噬菌体DNA整合方式的专一性和高度保守性。这一重组不需要RecA蛋白质的参与。说明噬菌体DNA的整合和切除过程。答:这是一种特异位点重组,其基本过程如下:attB由称为BOB的序列组成,而attP由POP'组成。O是核心序列,是attB和attP所共同的。而其两侧的序列是B,B和P,P,被称为臂。噬菌体DNA是环状的,重组时被整合入细菌染色体中,成为线性序列。前病毒的两侧是两个新的杂种att位点,左侧称为attL,由BOP组成,而右侧为attR,由POB组成。可见,整合和切出并不涉及相同的一对序列:整合需要识别attP和attB,而切出要求识别attL和attR。因此,重组位点的识别就决定了位点专一性重组的方向整合或切出。虽然位点专一重组是可逆的,但反应的方向取决于不同环境条件,这对决定噬菌体的生命力周期是非常性重要的。整合的。整合酶和IHF对整合和切出都是是必需的,而切出酶在控制反应方向上起重要作用它对切出是必须的,但能抑制整合。在切除的环化过程中如果发生错误,前噬菌体可能失去某些基因而代之以其相邻的细菌基因。因为整合位点处于细菌染色体的gal和bio基因之间,切除过程中噬菌体DNA偶尔会带走gal基因,生成gal(或称db)。gal或bio转导(感染)新的宿主时常常把gal或bio基因带到新的宿主中去,所以把gal或bio这些带有某些宿主基因的噬菌体称为转导噬菌体(transducing phage)。何谓鞭毛相转变?它如何控制鞭毛基因的表达?答:鼠伤寒沙门杆菌由鞭毛蛋白决定的H抗原有两种,分别为H1鞭毛蛋白和H2鞭毛蛋 白。在单菌落的沙门氏菌中经常出现少数呈另一H抗原的细菌,这种现象称为鞭毛相转变。沙门氏菌H片段倒位决定鞭毛相转变 hix为反向重复序列,它们之间的H片段可在Hin控制下进行特异位点重组(倒位)。H片段上有两个启动子P,其一驱动hin基因表达,另一正向时驱动H2和rH1基因表达,反向(倒位)时H2和rH1不表达。试总结免疫球蛋白基因重组的规则。答:免疫球蛋白由两条轻链(L链)和两条重链(H链)组成,它们分别由三个独立的基因族编码,其中两个编码轻链(链和链),一个编码重链。重链基因的V-D-J重排和轻链基因的V-J重排均发生在特异位点上。免疫球蛋白基因重组的规则如下:a) 链的重组:每个C片段前有J跟随;只在V和J-C之间发生一次重组(V和J的重组)。b) 链的重组:一条轻链也由两部分组装而成,但在C基因的组织过程中有所不同。一组5个J片段包含500-700个碱基对并被C外显子上的一个2-3kb的内显子所隔离。在鼠中,中心J片段是无功能的(J3)。一个V片段可以被连接到任何一条J片段上去。无论用的是哪个J片段,都可以成为原始可变外显子的终端部分。整合J片段左边的每个J片段都会缺失掉。而右边的J片段都会被作为可变和不可变外显子之间的内显子的一部分。c) 重链基因V、D和J片段的重组: 重链的可变区由V和J基因及第三个D基因片段 编码;V-D-J连接由两个阶段组成,第一个阶段是D片段和一个JH片段重组,然后是一个VH片段再和DJH片段重组。这个重构导致了邻近的CH片段(包含几个外显子)的表达。重组只发生在间隔为12 bp与间隔23 bp的不同信号序列之间,称为12-23规则。免疫球蛋白基因重组过程中产生的P核苷酸和N核苷酸是如何来的?它们产生的意义和需要付出的代价是什么?答:免疫球蛋白基因在重组过程中,RAG1/RAG2复合物切开七核苷酸与基因接头处的一 条链,形成3,OH、5,P未端。游离的3,OH攻击 另一条链的酯键,在基因片段末端形成发夹结构。然后复合物进一步将发夹结构切开,单链切开的位置往往不是原来通过转酯反应连接的位置,多出的核苷酸与末端序列相同,但方向相反,称为P核苷酸。末端可以被外切酶切除一些核苷酸,也可以由脱氧核苷酸转移酶外加一此核苷酸,称为N核苷酸。在接头处随机插入或删除核苷酸可以增加抗体基因的多样性,但如果插入或删除核苷酸数不是3的倍数,就将改变阅读框架而使基因失活。何谓转座重组?它有何生物学意义?答:由插入序列和转座子介导的基因移位或重排称为转座重组。转座重组的生物学意义有:可引起基因突变插入或切离;改变染色质的结构(缺失、倒位等);可以插入新基(ampR、terR等);在靶序列上引入新的转座子序列,原来序列保持不变;在靶序列上造成同向重复序列;产生新的变异,有利于进化。细菌的转座因子有几种?它们的结构有何特点?答:微生物的某些DNA片段作为一个独立单位可在染色体上移动,此种移动甚至可发生在不同种细胞之间。这种可移动的DNA片段称之为转座因子。细菌的转座因子有两种类型:插入序列(insert sequence,IS)和转座子(transposon,Tn)。插入序列不含任何宿主基因,是最简单的转座子,它们是细菌染色体或质粒DNA的正常组成部分。所有插入序列的两端都有反向重复。转座子除编码转座功能有关的基因外还携带抗性或其它标记基因。按结构可分为组合因子和复合因子。何谓Shspiro中间体?何谓共整合体?它们之间有何关系? 答:转座酶识别转座子的末端反向重复序列并且在其3,端切开,同时在靶部位交错切开单链,它的5,端突出末端与转座子的3,端连接,形成Shspiro中间体。在复制转座过程中,由转座酶分别切割转座子的供体和受体DNA分子,转座子的末端与受体DNA分子连接,并将转座子复制一份拷贝,由此生成的中间体即共整合体(cointegrat,)。共整合体可以理解为是一种特殊的Shspiro中间体。为什么真核生物转座因子可分为自主因子和非自主因子?它们转座的生物效应是否相同?答:真核生物由于有核存在,其转录和翻译在时空是的隔开的。因此,真核生物细胞内只要存在转座酶,任何序列片段只要存在该酶识别的反向重复末端均可发生转移,而无需由转移序列自身编码这些酶。因此真核生物转座因子可分为自主因子和非自主因子。它们转座的生物效应是不同的。自主因子能自主发生转座,而非自主因子能抑制邻近基因的表达,它本身不能转座,但在自主因子存在时,可发生转座。比较玉米的Ac-Ds系统和Smp-dSmp系统的特点。 答:在Ds-Ac系统中,大部分自主因子AC的长度由含5个外显子的单个基因组成,其产物是转座酶,它的末端有11bp的IR和8bp的DR,DR是由靶位点重复而成。各种Ds因子的长度和序列都不相同,但和Ac相关。其末端同样有11bp的IR。Ds比Ac短,其缺失的长度不同。Ac/Ds发生的转座是通过非复制机制,并且伴随着它们从供体位置的消失。Spm和En自主因子实际上是相同的。它们仅在不到10个位置上有差异。就像其它的转座子一样,末端含有13bp的IR,此重复序列对于转座是必须的,末端缺失就会形成转座的缺陷型。与Spm相关的转座子在其它的植物中也有发现,它们的结构相似,属于同一个家族。它们末端IR都邻接着靶DNA重复而产生的3bp的DR。末端的IR称为转座的CACTA群。这个家族所有的非自主因子(dSpm是缺陷的Spm)都和Spm因子本身的结构密切相关。它们是tnpA缺失了外显子。Spm的插入能控制位点基因的表达,受体位点可能受到正的的或负的调控。一个Spm-可抑制基因座(Spm- suppressible locus)受到抑制而不能表达。一个spm- 依赖性座位(spm- dependent locus)只有在spm的帮组下才表达。当被插入的因子是一个dSpm时,对转移功能的抑制或依赖由一个自主性Spm来提供。这两个相反作用的基础是什么呢?一个dSpm-可抑制等位基因中其外显子内插入了一个dSpm,人们对这个结构会立即产生疑问,一个基因其外显子中插入了一个dSpm它怎么能表达!这个dSpm序列能在转录本中利用这个序列的末端被剪切掉。这个剪切事件可以使mRNA序列中留下一个变化。这样,就解释了它所编码的蛋白性质发生改变的原因。同样某些插入的Ds也可从转录本中被剪切掉。TnpA为原称为Spm因子,它提供了抑制功能。缺陷型因子的存在可能使它所插入的基因表达减少,但并不消失。然而诱导一个具有一个有功能的tnpA基因的自发因子可能会抑制靶基因的表达。抑制作用是TnpA结合于缺陷因子中的靶位点的能力产生的,从而阻断了正在进行的转录。一个dSpm-依赖性等位基因在其附近(而不在基因中)含有一个插入序列。这个插入序列提供了一个增强子,它可以激活位于受体座位的基因的启动子。在dSpm因子上的抑制和依赖的存在取决于一个自主因子Spm因子tnpA基因的反式作用产物与这个因子末端的顺式作用位点间的相互作用。因此在蛋白质和此因子末端之间的单个相互作用不是抑制就是激活受体基因上游或者受体基因中的靶座位。无论靶座位点否依赖这种因子。Spm因子从完全活化到隐蔽在此范围内以各种状态存在。隐蔽因子是沉默的,既不转座也不激活dspm因子。一个潜伏的因子可以通过和完全活化的Spm因子的相互作用而转变或恢复成活性状态。失活是由于在转录起始是附近的序列被甲基化而导致的。果蝇P因子在杂种不育中起何作用?杂种不育与物种形成有何关系?答:在和M雌果蝇杂交中P型雄果蝇的任何一条染色体都能导致不育。重组染色体的贡献表明,在每条P型雄果蝇染色体中的各区域也都导致不育。这表明P雄果蝇具有大量的P因子(P factors),这个因子存在于很多不同的染色体位置上。这些位置在P品系的个体之间也是不同的。而在M雌果蝇的染色体上都没有这种P因子。通过对杂种不育果蝇的W突变体的DNA作图发现,不育是P因子的存在所致导的。所有的突变都是由于W位点插入了DNA片段。这个插入顺序被称为P因子(P element)。杂种不育减少了品种间的杂交,是新种形成途径的一个步骤。如果杂种不育系统是在某些地理位置通过转座产生的。另一些因子可能是在其它某些地理位置产生的不同系统。两个不同区域的果蝇同是两个不同的系统而将产生杂种不育。若这一表现使它们之间杂种不育那么群体将出现隔离,进一步的隔离可能还会发生,多个杂种不育系统导致它们之间不能交配而形成新种。第36章 RNA的生物合成和加工比较四类聚合酶性质和作用的异同(四类聚合酶是:DNA指导的DNA聚合酶,DNA指导的RNA聚合酶,RNA指导的RNA聚合酶,RNA指导的DNA聚合酶)答:DNA指导的DNA聚合酶是 以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。DNA指导的DNA聚合酶的共同特点是:(1)需要提供合成模板;(2)不能起始新的DNA链,必须要有引物提供3'OH;(3)合成的方向都是5'3'(4)除聚合DNA外还有其它功能。所有原核和真核的DNA聚合酶都具有相同的合成活性,都可以在3'OH上加核苷酸使链延伸,其速率为1000 Nt/min。加什么核苷酸是根据和模板链上的碱基互补的原则而定的。 DNA指导的RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5-三磷酸合成RNA的酶。RNA聚合酶(RNA polymerase)的作用是转录RNA。有的DNA指导的RNA聚合酶有比较复杂的亚基结构。RNA指导的RNA聚合酶或RNA复制酶是在某些RNA病毒中有以病毒RNA为模板催化RNA合成的酶。RNA复制酶催化的合成反应是以RNA为模板,由5向3方向进行RNA链的合成。RNA复制酶缺乏校对功能的内切酶活性,因此RNA复制的错误率较高,RNA复制酶只是特异地对病毒的RNA起作用,而宿主细胞的RNA一般并不进行复制。RNA指导的DNA聚合酶是反转录酶,具有三种酶活性,即RNA指导的DNA聚合酶,RNA酶,DNA指导的DNA聚合酶。原核生物RNA聚合酶是如何找到启动子的?真核生物聚合酶与之相比有何异同?答:原核生物RNA聚合酶是在亚基引导下识别并结合到启动子上的。不同类型的亚基识别不同类型的启动子。真核生物RNA聚合酶自身不能识别和结合到启动子上,而需要在启动子上由转录因子和RNA聚合酶装配成活性转录复合物才能起始转录。何谓启动子?保守序列与

    注意事项

    本文(王镜岩第三版生物化学下册课后习题答案.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开