希望森兰变频器在自来水厂的恒压供水系统解决方案.docx
-
资源ID:17789544
资源大小:117.36KB
全文页数:8页
- 资源格式: DOCX
下载积分:15.18金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
希望森兰变频器在自来水厂的恒压供水系统解决方案.docx
希望森兰变频器在自来水厂的恒压供水系统解决方案希望森兰变频器在自来水厂的恒压供水系统解决方案导语:自来水厂的供水泵站中,供水系统一般由假设干台扬程相近的水泵组成,调节水压和流量的传统方法是,按期望输出的水压和流量用人工控制水泵运行的台数。一、前言自来水厂的供水泵站中,供水系统一般由假设干台扬程相近的水泵组成,调节水压和流量的传统方法是,按期望输出的水压和流量用人工控制水泵运行的台数。如供水才能4-6万吨/日的自来水厂,水泵的配置方案有多种,其中一种可行的方案是三台160kW和一台90kKW水泵组成。系统工作时,传统的方法是,假设供水量较大,显然,流量和管网水压已经不能知足要求,这时需人工投入水泵,根据现场管网水压情况由工人来决定投入160kW水泵还是90kW水泵;假设供水量减小,管网水压会升高,此时又需人工切除水泵。在深夜用水量较小时,为节能考虑用一台90kW水泵供水。由于水泵的流量较大,为防止水锤效应,人工投切时,投入泵时应遵循先开机,后开阀、切除泵时应遵循先关阀,后停机的操纵程序。假设是小功率的水泵,水泵的出水侧都装有普通止回阀,其本上能自动保证以上的操纵程序,只是停机时止回阀关闭前的瞬间还是有水锤效应产生,假如安装的是微阻缓闭止回阀,停机时根本上也不存在水锤效应。二.变频恒压供水的控制方案由于城市自来水的用量随季节的变化而变化,随逐日时段不同而变化。为使供水的水压恒定,最常见的方法是采用变频恒压供水系统,即压力变送器装在主管网上检测管网压力信号,再将此压力信号送到变频器PLC的模拟信号输入端口,由此构成压力闭环控制系统,管网压力的恒定依靠变频器的调节控制。对于多泵情况,可以两种不同的控制系统方案,一种是顺序控制方案,系统图如图一所示:图一顺序控制方案系统图图中:BP1变频器;BU2BU4-软起动器,PT压力变送器。由图一可见,变频器连接在第一台水泵电机上,需要加泵或者减泵时,由变频器RO1RO3端口输出信号起动或者停顿其他的水泵,这时水泵的起动采用自耦降压起动装置或者软起动器。这种方案的特点是水泵电机不需要在变频和工频之间切换;第一台水泵永远连接在变频器上,没有切换经过中的失压现象;由于变频泵以外的泵都有软起动器,所以不需要再做备用系统,当变频器故障时,可用软起动器手动起动M2M4水泵,保证供水不致中断;每台电机都有起动器,初始投资较大。另一种是循环投切方案,系统图如图二所示图二变频恒压供水循环投切方案系统图图中:BP1变频器,BU1软启动器,PT压力变送器,ZJ1、ZJ2用于控制系统的起动/停顿和自动/手动转换。由图二可见,变频器连接在第一台水泵电机上,需要加泵时,变频器停顿运行,并由变频器的输出端口RO1RO3输出信号到PLC,由PLC控制切换经过。切换开场时,变频器停顿输出变频器设置为自由停车,利用水泵的惯性将第一台水泵切换到工频运行,变频器连接到第二台水泵上起动并运行,照此,将第二台水泵切换到工频运行,变频器连接到第三台水泵上起动并运行;需要减泵时,系统将第一台水泵停顿,第二台水泵停顿,这时,变频器连接在第三台水泵上。再需要加泵时,切换从第三台水泵开场循环。这种方式保证永远有一台水泵在变频运行,四台水泵中的任一台都可能变频运行。这样,才能做到不管用水量怎样改变都可保持管网压力根本恒定,且各台水泵运行的时间根本一样,给维护和检修带来方便,所以,大局部的供水厂家都钟情于循环投切方案。但此方案也有缺乏之处,就是在只有一台变频器运行并切换到工频经过中会造成管网短时失压,在设计时应充分的引起重视。另外,必须设置一套备用系统,图中的软启动器就是作为备用。当变频器或者PLC故障时,可用软起动器手动轮流起动各泵运行供水。三.循环投切的工作经过众所周知,变频器的输出端不能连接电源,也不能运行中带载脱闸,切换经过应按以下的程序进展。循环投切恒压供水系统投入运行时,当变频器的输出频率已到达50Hz或者52Hz时,能否将变频器的上限频率设为52Hz,取决于水泵电机运行在52Hz时是否超载。在50Hz频率下运行60s管网水压未到达给定值,此时,该台水泵需切换到工频运行。切换经过是:先关该台水泵电动阀,然后变频器停车(停车方式设定为自由停车),水泵电机惯性运转,考虑到电机中的剩余电压,不能将电机立即切换到工频,而是延时一段时间,到电机中的剩余电压下降到较小值,这个值保证电源电压与剩余电压不同相时造成的切换电流冲击较小,在某水厂160kW水泵电机的切换时间为600ms。连接在电机工频回路中的空气开关容量为400A,经现场调试切换经过的电流冲击较小,每一次切换都百分之百的成功。关阀后停车,水泵电机根本上处于空载运转,到600ms时电机的转速下降不是很多,使切换时电流冲击较小。切换完成后,再翻开电动阀;已停车的变频器切换到另外的水泵上起动并运行,再开电动阀。切除工频泵时,先关阀,后停车,这样无水锤现象产生。这些操纵都是由PLC控制自动完成。实际上,电机的传统起动方式也存在一定的电流冲击。对电机直接起动时,起动电流是额定电流的57倍,小功率的电机经常采用直接起动方式。电机功率较大时,常用星三角或者自耦降压起动器。自耦降压起动器起动电机时,首先加60%的电压,属恒频调压调速,数秒钟或者数十秒钟后(根据电机的容量而定),电机加速到60%电压时的速度,将60%的电压切除后立即连接到100%(380V)电源上。切除60%电压时,电机的速度较变频器投到工频时电机的速度要低,剩余电压相对低一些,投切是在瞬间完成的,电流冲击可能性较大,为保证切换成功,回路上的空气开关容量一般都选得比拟大。循环投切时,电机从变频往工频切换,只要切换的延时足够,电机由变频切换到工频时的电流冲击不大。一般剩余电压的衰减时间为12秒,切换延时也不是越长越好,延时短,剩余电压高,速度降落少;延时长,剩余电压低,但速度降落大。选择延时需二者兼顾,以求得最小的冲击电流。假如要使切换经过无电流冲击,需采用同步切换方式,参加一些控制手段和控制元件就可实现,但考虑经济上是否合算。四.循环投切对变频器和电机的影响将电机从变频状态切换到工频状态时,变频器内的功率器件立即关闭,电机的电流不能跃变,功率器件旁的并联二极管提供了续流通路,剩余电压经二极管整流器和中间环节电容流通,转子电阻消耗能量,电机的定子也能消耗局部能量,因此,剩余电压的衰减比拟快,固然在切换时仍有一定的剩余电压,但对变频器影响已经很小,对电机寿命也无多大的影响。自耦降压起动器切换时,电机内定子的剩余电压无通路流通,只有转子回路是闭合回路,也只有转子电阻消耗能量,剩余电压的衰减比拟慢。切换时,因剩余电压存在而形成的冲击电流较大,对电机有一定的影响,电机设计时已充分考虑了这些因素。五.应用实例四川遂宁市自来水二厂,供水才能6万吨/日,城市管网压力0.4MPa,泵组为3台160kW,1台90kW水泵,要求恒压供水并采用计算机监控,变频器或者控制系统故障可由软起动器手动起动各泵。1计算机监控内容管网压力,流量,泵的运行状态,阀启闭状态,电机温度,各泵运行的电流,电压,功率和功率因素,并监控水质参数如余氯,浊度,含铁量,PH值等。2原理框图图三计算机监控原理图为保证系统的可靠性,上位机PC用于治理,用组态软件做出假设干工艺流程图,实时显示系统的运行状况,并统计历史数据,如需要可随时打印报表;还用于故障的报警和处理。PC机为研华工业计算机,PLC为西门子S-7300,便于与总控室计算机联网,采用带有PROFIBUS接口的CPU315。CP5611是通讯模块,PDM-820AC电参数综合分析仪用于检测系统的用电量。控制水泵的起/停,切换,阀的启/闭;电机电流,温度的检测,水泵使用时间的统计;压力,流量,水质参数的收集等,均由PLC完成。水压的给定值由变频器键盘设定。图四变频恒压供水电气原理图如图四所示,与前述的循环投切方案根本一样,BP1为森兰SB200系列160kW变频器,DZ1DZ6为LGABE403a400A空气开关,FU1500A,FU2600A为快熔,KM1-KM10为LGGMC-400沟通接触器,PT为森纳斯压力变送器,量程1Mpa。系统调试时,水泵电机从变频状态切换到工频状态,延时从300ms起,到500ms时电流表显示也无明显的冲击,最后定为600ms。软起动器设定为限流起动方式,设定为2.5倍。软起动器起动时,起动电流接近800A,但在30s内下降到额定电流以下,查600A熔断器曲线,通过1000A电流在60s熔断,所以软起动器的熔断器定为600A。该系统已经投产两年,逐日供水4-5万吨,运行良好。据厂家统计,电耗/吨减少20%.六.结论多泵变频恒压供水系统常用的两种构成方案,两种方案各有优劣,采用循环投切方案的系统较多,在水泵电机从变频状态切换到工频状态时,只要严格遵循先关阀,变频器自由停车,延时后再切换;停车时,先开机,后开阀。这样,既可保证变频器的平安运行,又无水锤现象发生。