06【数学】312《复数的几何意义》课件(新人教版选修1-2).ppt
-
资源ID:17797623
资源大小:222.51KB
全文页数:17页
- 资源格式: PPT
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
06【数学】312《复数的几何意义》课件(新人教版选修1-2).ppt
3.1.2复数的几何意义教学目标教学目标 理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式描出其对应的点及向量。 教学重点教学重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量。 教学难点教学难点: 根据复数的代数形式描出其对应的点及向量。在几何上,在几何上,我们用什么我们用什么来表示实数来表示实数?想一想?想一想?类比类比实数的实数的表示,可以表示,可以用什么来表用什么来表示复数?示复数?实数可以用实数可以用数轴数轴上的点来表示。上的点来表示。实数实数 数轴数轴上的点上的点 (形形)(数数)一一对应一一对应 回忆回忆复数的一般形式?Z=a+bi(a, bR)实部!虚部!一个复数一个复数由什么唯由什么唯一确定?一确定?复数复数z=a+bi有序实数对有序实数对(a,b)直角坐标系中的点直角坐标系中的点Z(a,b)xyobaZ(a,b) 建立了平面直角建立了平面直角坐标系来表示复数的坐标系来表示复数的平面平面x轴轴-实轴实轴y轴轴-虚轴虚轴(数)(数)(形)(形)-复数平面复数平面 (简称简称复平面复平面)一一对应一一对应z=a+bi(A)在复平面内,对应于实数的点都在实在复平面内,对应于实数的点都在实 轴上;轴上;(B)在复平面内,对应于纯虚数的点都在在复平面内,对应于纯虚数的点都在 虚轴上;虚轴上;(C)在复平面内,实轴上的点所对应的复在复平面内,实轴上的点所对应的复 数都是实数;数都是实数;(D)在复平面内,虚轴上的点所对应的复在复平面内,虚轴上的点所对应的复 数都是纯虚数。数都是纯虚数。例例1.辨析:辨析:1下列命题中的假命题是(下列命题中的假命题是( )D 2“a=0”是是“复数复数a+bi (a , bR)是纯是纯虚数虚数”的(的( )。)。 (A)必要不充分条件必要不充分条件 (B)充分不必要条件充分不必要条件 (C)充要条件充要条件 (D)不充分不必要条件不充分不必要条件C 3“a=0”是是“复数复数a+bi (a , bR)所对所对应的点在虚轴上应的点在虚轴上”的(的( )。)。 (A)必要不充分条件必要不充分条件 (B)充分不必要条件充分不必要条件 (C)充要条件充要条件 (D)不充分不必要条件不充分不必要条件A例例2 2 已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内所在复平面内所对应的点位于第二象限,求实数对应的点位于第二象限,求实数m m允许的取值范围。允许的取值范围。 表示复数的点所表示复数的点所在象限的问题在象限的问题复数的实部与虚部所满复数的实部与虚部所满足的不等式组的问题足的不等式组的问题转化转化(几何问题几何问题)(代数问题代数问题)一种重要的数学思想:一种重要的数学思想:数形结合思想数形结合思想020622mmmm解:由1223mmm或得)2 , 1 ()2, 3(m变式一:变式一:已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内在复平面内所对应的点在直线所对应的点在直线x-2y+4=0 x-2y+4=0上,求实数上,求实数m m的值。的值。 解:复数复数z=(m2+m-6)+(m2+m-2)i在复平面在复平面内所对应的点是(内所对应的点是(m2+m-6,m2+m-2),), (m2+m-6)-2(m2+m-2)+4=0, m=1或或m=-2。例例2 2 已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内所在复平面内所对应的点位于第二象限,求实数对应的点位于第二象限,求实数m m允许的取值范围。允许的取值范围。 变式二:变式二:证明对一切证明对一切m m,此复数所对应的点不可能,此复数所对应的点不可能位于第四象限。位于第四象限。点位于第四象限,证明:若复数所对应的020622mmmm则3221mmm 或即不等式解集为空集不等式解集为空集所以复数所对应的点不可能位于第四象限所以复数所对应的点不可能位于第四象限.小结复数复数z=a+bi直角坐标系中的点直角坐标系中的点Z(a,b)一一对应一一对应平面向量平面向量OZ 一一对应一一对应一一对应一一对应xyobaZ(a,b)z=a+bi小结xOz=a+biy复数的绝对值复数的绝对值 (复数的模复数的模) 的的几何意义几何意义:Z (a,b)22ba 对应平面向量对应平面向量 的模的模| |,即,即复数复数 z=z=a+ +bi i在复平面上对应的点在复平面上对应的点Z(a,b)到原点的到原点的距离。距离。OZ OZ | z | = | |OZ 小结 例例3 求下列复数的模:求下列复数的模: (1)z1=- -5i (2)z2=- -3+4i (3)z3=5- -5i(2)(2)满足满足|z|=5(zC)|z|=5(zC)的的z z值有几个?值有几个?思考:思考:(1)(1)满足满足|z|=5(zR)|z|=5(zR)的的z z值有几个?值有几个?(4)z4=1+mi(mR) (5)z5=4a- -3ai(a0) 这些复这些复 数对应的点在复平面上构成怎样的图形?数对应的点在复平面上构成怎样的图形? 小结xyO设设z=x+yi(x,yRz=x+yi(x,yR) )满足满足|z|=5(zC)|z|=5(zC)的复数的复数z z对应的点在对应的点在复平面上将构成怎复平面上将构成怎样的图形?样的图形?55555|22yxz小结小结:复数的几何意义是什么?复数复数z=a+bi直角坐标系中的点直角坐标系中的点Z(a,b)一一对应一一对应平面向量平面向量OZ 一一对应一一对应一一对应一一对应比一比?比一比?复数还有哪复数还有哪些特征能和些特征能和平面向量类平面向量类比比?