人教新课标九年级下---锐角三角函数(第2课时)课件.ppt
-
资源ID:17909526
资源大小:804.01KB
全文页数:11页
- 资源格式: PPT
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教新课标九年级下---锐角三角函数(第2课时)课件.ppt
探究探究如图,在如图,在RtABC中,中,C90,当锐角,当锐角A确定时,确定时,A的对边与斜边的比就随的对边与斜边的比就随之确定,此时,其他边之之确定,此时,其他边之间的比是否也确定了呢?间的比是否也确定了呢?为什么?为什么?ABC邻边邻边b对边对边a斜边斜边c 当锐角当锐角A的大小确定时,的大小确定时,A的邻边与斜边的比、的邻边与斜边的比、A的对边与邻边的比的对边与邻边的比也分别是确定的,我们把也分别是确定的,我们把A的邻边与斜边的比叫做的邻边与斜边的比叫做A的余弦(的余弦(cosine),),记作记作cosA,即,即cbAA斜边的邻边cos 把把A的对边与邻边的比叫做的对边与邻边的比叫做A的正切(的正切(tangent),记作),记作tanA,即,即baAAA的邻边的对边tan 锐角锐角A的正弦、余弦、正切都叫做的正弦、余弦、正切都叫做A的锐角三角函数的锐角三角函数 情情 境境 探探 究究 例例2 如图,在如图,在RtABC中,中,C90,BC6,sinA ,求,求cosA、tanB的值的值53解:解:ABBCA sin10356sinABCAB又又86102222BCABAC,54cosABACA34tanBCACBABC6 例例 题题 示示 范范 变题:变题: 如图,在如图,在RtABC中,中,C90,cosA ,求,求sinA、tanA的值的值1517解:解:15cos17ACAAB88sin,1717BCkAABk88tan1515BCkAACkABC 例例 题题 示示 范范设设AC=15k,则,则AB=17k所以所以2222(17 )(15 )8BCABACkkk 例例3: 如图,在如图,在RtABC中,中,C90 例例 题题 示示 范范1.求证:求证:sinA=cosB,sinB=cosA2.求证:求证:sintancosAAA3.求证:求证:22sincos1ABABC2sinsinsinAAA 例例4: 如图,已知如图,已知AB是半圆是半圆O的直径,弦的直径,弦AD、BC相交于点相交于点P,若,若 例例 题题 示示 范范DPB 那么那么 ( )CDAB1.sin, .cos , .tan,.tanABCDB变题:变题: 如图,已知如图,已知AB是半圆是半圆O的直径,弦的直径,弦AD、BC相交于点相交于点P,若,若AB=10,CD=6,求,求 .sin OCDBAP4sin5 小结如图,如图,RtABC中,中, C=90度,度,因为因为0sinA 1, 0sinB 1, tan A0, tan B0ABC 0cosA 1, 0cosB 1,22sincos1所以,对于任何一个锐角所以,对于任何一个锐角 ,有,有0sin 1, 0cos 1,tan 0,sin,cos,tanBCACBCAAAABABACsin,cos,tanACBCACBBBABABBCsincoscossin1tantanABABAB1. 分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值练练 习习解:由勾股定理解:由勾股定理222213125BCABACABC13125sin13BCAAB12cos13ACAAB5tan12BCAAC12sin13ACBAB5cos13BCBAB12tan5ACBBC2. 在在RtABC中,如果各边长都扩大中,如果各边长都扩大2倍,那么锐角倍,那么锐角A的正弦值、余的正弦值、余弦值和正切值有什么变化?弦值和正切值有什么变化?ABC解:设各边长分别为解:设各边长分别为a、b、c,A的三个三角函数分别为的三个三角函数分别为sincostanabaAAAccb,则扩大则扩大2倍后三边分别为倍后三边分别为2a、2b、2c2sin2aaAcc2cos2bbAcc2tan2aaAbbABC3. 如图,在如图,在RtABC中,中,C90,AC8,tanA , 求:求:sinA、cosB的值的值43ABC8解:解:3tan4BCAAC8AC 338644BCAC63sin105BCAAB22228610ABACBC63cos105BCBAB4. 如图,在如图,在ABC中,中,AD是是BC边上的高,边上的高,tanB=cosDAC,(1)求证:)求证:AC=BD;(2)若)若 ,BC=12,求,求AD的长。的长。12sin13C DBCA5. 如图,在如图,在ABC中,中, C=90度,若度,若 ADC=45度,度,BD=2DC,求求tanB及及sinBAD.DABC