高中数学 相等向量与共性向量课件 新人教A版必修4.ppt
-
资源ID:17992511
资源大小:334KB
全文页数:20页
- 资源格式: PPT
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中数学 相等向量与共性向量课件 新人教A版必修4.ppt
2.12.1高中新课程数学必修高中新课程数学必修2.1.3 2.1.3 相等向量与共线向量相等向量与共线向量 问题提出问题提出 1. 1.向量与数量有什么联系和区别?向量与数量有什么联系和区别? 向量有哪几种表示?向量有哪几种表示?联系:联系:向量与数量都是有大小的量;向量与数量都是有大小的量;区别:区别:向量有方向且不能比较大小,数向量有方向且不能比较大小,数 量无方向且能比较大小量无方向且能比较大小. .向量可以用有向线段表示,也可以用字向量可以用有向线段表示,也可以用字母符号表示母符号表示. .问题提出问题提出 1. 1.向量与数量有什么联系和区别?向量与数量有什么联系和区别? 向量有哪几种表示?向量有哪几种表示?联系:联系:向量与数量都是有大小的量;向量与数量都是有大小的量;区别:区别:向量有方向且不能比较大小,数向量有方向且不能比较大小,数 量无方向且能比较大小量无方向且能比较大小. .向量可以用有向线段表示,也可以用字向量可以用有向线段表示,也可以用字母符号表示母符号表示. . 2. 2.什么叫向量的模?零向量和单位什么叫向量的模?零向量和单位向量分别是什么概念?向量分别是什么概念? 向量的模:向量的模:表示向量的有向线段的长度表示向量的有向线段的长度. .零向量:零向量:模为模为0 0的向量的向量. . 单位向量:单位向量:模为模为1 1个单位长度的向量个单位长度的向量. . 3. 3.引进向量概念后,我们就要建立引进向量概念后,我们就要建立相关的理论体系,为了研究的需要,我相关的理论体系,为了研究的需要,我们必须对向量中的某些现象作出合理的们必须对向量中的某些现象作出合理的约定或解释,特别是两个向量的相互关约定或解释,特别是两个向量的相互关系系. .对此,我们将作些研究对此,我们将作些研究. .探究(一):探究(一):相等向量与相反向量相等向量与相反向量 思考思考1 1:向量由其模和方向所确定向量由其模和方向所确定. .对于对于两个向量两个向量a、b,就其模等与不等,方向,就其模等与不等,方向同与不同而言,有哪几种可能情形?同与不同而言,有哪几种可能情形? 模相等,方向相同;模相等,方向相同;模相等,方向不相同;模相等,方向不相同;模不相等,方向相同;模不相等,方向相同;模不相等,方向不相同;模不相等,方向不相同;思考思考2 2:两个向量不能比较大小,只有两个向量不能比较大小,只有“相等相等”与与“不相等不相等”的区别,你认为的区别,你认为如何规定两个向量相等?如何规定两个向量相等?长度相等且方向相同的向长度相等且方向相同的向量叫做相等向量量叫做相等向量. 向量向量a与与b相等记作相等记作a=b. 思考思考3 3:用有向线段表示非零向量用有向线段表示非零向量 和和 ,如果,如果 ,那么,那么A A、B B、C C、D D四点的位置关系有哪几种可能情形?四点的位置关系有哪几种可能情形?A BC DA BC DA AB BC CD DA AB BC CD D思考思考4 4:对于非零向量对于非零向量 和和 ,如,如果果 ,通过平移使起点,通过平移使起点A A与与C C重合,重合,那么终点那么终点B B与与D D的位置关系如何?的位置关系如何?A BC DA BC D长度相等且方向相反的向量叫做长度相等且方向相反的向量叫做相反向量相反向量. .思考思考5 5:非零向量非零向量 与与 称为相反向称为相反向量,一般地,如何定义相反向量?量,一般地,如何定义相反向量?A BB AD DC CB BA AB BA A思考思考6 6:如果非零向量如果非零向量 与与 是相反是相反向量,通过平移使起点向量,通过平移使起点A A与与C C重合,那么重合,那么终点终点B B与与D D的位置关系如何?的位置关系如何? A BC DD DC CB BA AB BA A探究(二):探究(二):平行向量与共线向量平行向量与共线向量 思考思考1 1:如果两个向量所在的直线互相平如果两个向量所在的直线互相平行,那么这两个向量的方向有什么关系?行,那么这两个向量的方向有什么关系?思考思考2 2:方向相同或相反方向相同或相反的非零向量叫做的非零向量叫做平行向量平行向量,向量,向量a与与b平行记作平行记作a/b,那么,那么平行向量所在的直线一定互相平行平行向量所在的直线一定互相平行吗?吗?方向相同或相反方向相同或相反思考思考3 3:零向量零向量0 0与向量与向量a平行吗?平行吗?规定:零向量与任一向量平行规定:零向量与任一向量平行. . 思考思考4 4:将向量平移,不会改变其长度和将向量平移,不会改变其长度和方向方向. .如图,设如图,设a、b、c是一组平行向量,是一组平行向量,任作一条与向量任作一条与向量a所在直线平行的直线所在直线平行的直线l,在在l上任取一点上任取一点O O,分别作,分别作 = =a, = =b, = =c,那么点,那么点A A、B B、C C的位置关系如何?的位置关系如何?O AO BO CA AB BC CO Olabc思考思考5 5:上述分析表明,任一组平行向上述分析表明,任一组平行向量都可以移动到同一直线上,因此,量都可以移动到同一直线上,因此,平平行向量也叫做行向量也叫做共线向量共线向量. .如果非零向量如果非零向量 与与 是共线向量,那么点是共线向量,那么点A A、B B、C C、D D是否一定共线?是否一定共线?A BC D思考思考6 6:若向量若向量a与与b平行(或共线),则平行(或共线),则向量向量a与与b相等或相反吗?反之,若向量相等或相反吗?反之,若向量 a与与b相等或相反,则向量相等或相反,则向量a与与b平行(或平行(或共线)吗?共线)吗?思考思考7 7:对于向量对于向量a、b、c,若,若a / b, b / c,那么,那么a / c吗?吗?思考思考8 8:对于向量对于向量a、b、c,若,若a =b, b =c,那么,那么a = c吗?吗? 例例1 1 判断下列命题是否正确:判断下列命题是否正确:(1 1)若两个单位向量共线,则这两个)若两个单位向量共线,则这两个向量相等;向量相等; ( )(2 2)不相等的两个向量一定不共线;)不相等的两个向量一定不共线; ( )(3 3)在四边形)在四边形ABCDABCD中,若向量与共线,中,若向量与共线,则该四边形是梯形;则该四边形是梯形; ( )(4 4)对于不同三点)对于不同三点O O、A A、B B,向量与一,向量与一定不共线定不共线. . ( )理论迁移理论迁移 例例2 2、如图,设、如图,设O O为正六边形为正六边形ABCDEFABCDEF的的 中心,分别写出与中心,分别写出与 、 相等相等 的向量的向量. .O AO BA AB BC CD DE EF FO OO AC BD OEFO BD CEOFA 例例3 3、如图,在、如图,在ABCABC中,中,D D、E E、F F分别分别 是是ABAB、BCBC、CACA边上的点,边上的点, 已知已知 求证:求证: . . ,A DD B,D FB ED EA FA AB BCD DE EF F小结作业小结作业1.1.相等向量与相反向量是并列概念,平相等向量与相反向量是并列概念,平行向量与共线向量是同一概念,相等向行向量与共线向量是同一概念,相等向量(相反向量)与平行向量是包含概念量(相反向量)与平行向量是包含概念. .2.2.任意两个相等的非零向量,都可用同任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的一条有向线段表示,并且与有向线段的起点无关起点无关. .3.3.向量的平行、共线与平面几何中线段向量的平行、共线与平面几何中线段的平行、共线是不同的概念,平行向量的平行、共线是不同的概念,平行向量(共线向量)对应的有向线段既可以平(共线向量)对应的有向线段既可以平行也可以共线行也可以共线. .4.4.平行向量不具有传递性,但非零平行平行向量不具有传递性,但非零平行向量和相等向量都具有传递性向量和相等向量都具有传递性. .作业:作业:P P77777878习题习题2.1A2.1A组:组:3 3,4.4. B B组:组:1 1,2.2.