263实际问题与二次函数(2).ppt
生活是数学的源泉,生活是数学的源泉,我们是数学学习的主人我们是数学学习的主人. 2 . 二次函数y=ax2+bx+c的图象是一条 ,它的对称轴是 ,顶点坐标是 . 当a0时,抛物线开口向 ,有最 点,函数有最 值,是 ;当 a0时,抛物线开口向 ,有最 点,函数有最 值,是 。抛物线abacab44,22abx2直线abac442上小下大abac442高低 1. 二次函数y=a(x-h)2+k的图象是一条 ,它的对称轴是 ,顶点坐标是 .抛物线直线x=h(h,k)基础扫描 3. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 。当x= 时,y的最 值是 。 4. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 。当x= 时,函数有最 值,是 。 5.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 。直线x=3(3 ,5)3小5直线x=-4(-4 ,-1)-4大-1直线x=2(2 ,1)2小1基础扫描 在日常生活中存在着许许多多的与数学知识有关的在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。实际问题。如繁华的商业城中很多人在买卖东西。 如果你去买商品,你会选买哪一家呢?如果你是商场经理,如果你去买商品,你会选买哪一家呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?如何定价才能使商场获得最大利润呢?26.3 实际问题与二次函数第课时第课时如何获得最大利润问题如何获得最大利润问题 问题问题1.已知某商品的进价为每件已知某商品的进价为每件40元,售价是每件元,售价是每件 60元,每星期可卖出元,每星期可卖出300件。市场调查反映:如果调件。市场调查反映:如果调整价格整价格 ,每涨价,每涨价1元,每星期要少卖出元,每星期要少卖出10件。件。要想获要想获得得6090元的利润,该商品应定价为多少元?元的利润,该商品应定价为多少元? 6000 (20+x)(300-10 x) (20+x)( 300-10 x) (20+x)( 300-10 x) =6090 自主探究分析:没调价之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 。 已知某商品的进价为每件已知某商品的进价为每件40元,售价是每件元,售价是每件 60元,每星期可卖出元,每星期可卖出300件。市场调查反映:件。市场调查反映:如果调整价格如果调整价格 ,每涨价,每涨价1元,每星期要少卖出元,每星期要少卖出10件。件。要想获得要想获得6090元的利润,该商品应定价元的利润,该商品应定价为多少元?为多少元? 若设定价每件x元,那么每件商品的利润可表示为 元,每周的销售量可表示 为 件,一周的利润可表示 为 元,要想获得6090元利润可列方程 . (x-40)300-10(x-60) (x-40)300-10(x-60) (x-40)300-10(x-60)=6090问题问题2.已知某商品的已知某商品的进价进价为每件为每件4040元,元,售售价价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。市件。市场调查反映:如调整价格场调查反映:如调整价格 ,每,每涨价涨价一元,一元,每星期要每星期要少卖少卖出出1010件。件。该商品应定价为多该商品应定价为多少元时,商场能获得少元时,商场能获得最大利润最大利润?合作交流问题问题3.已知某商品的已知某商品的进价进价为每件为每件4040元。现在元。现在的的售价售价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。件。市场调查反映:如调整价格市场调查反映:如调整价格 ,每每降价降价一元,一元,每星期可每星期可多卖多卖出出2020件。如何定价才能使件。如何定价才能使利润利润最大最大?问题问题4.4.已知某商品的已知某商品的进价进价为每件为每件4040元。现在元。现在的的售价售价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。件。市场调查反映:如调整价格市场调查反映:如调整价格 ,每,每涨价涨价一元,一元,每星期要每星期要少卖少卖出出1010件;件;每每降价降价一元,每星期一元,每星期可可多卖多卖出出2020件。如何定价才能使件。如何定价才能使利润最大利润最大?解:设每件涨价为解:设每件涨价为x元时获得的总利润为元时获得的总利润为y元元.y =(60-40+x)(300-10 x) =(20+x)(300-10 x) =-10 x2+100 x+6000 =-10(x2-10 x ) +6000 =-10(x-5)2-25 +6000 =-10(x-5)2+6250当当x=5时,时,y的最大值是的最大值是6250.定价定价:60+5=65(元)(元)(0 x30)怎样确定x的取值范围解解:设每件降价设每件降价x元时的总利润为元时的总利润为y元元.y=(60-40-x)(300+20 x) =(20-x)(300+20 x) =-20 x2+100 x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0 x20)所以定价为所以定价为60-2.5=57.5时利润最大时利润最大,最大值为最大值为6125元元. 答答:综合以上两种情况,定价为综合以上两种情况,定价为65元时可元时可 获得最大利润为获得最大利润为6250元元.由由(2)(3)的讨论及现在的销售的讨论及现在的销售情况情况,你知道应该如何定价能你知道应该如何定价能使利润最大了吗使利润最大了吗?怎样确定x的取值范围w 某商店购进一批单价为某商店购进一批单价为2020元的日用品元的日用品, ,如果以单价如果以单价3030元销售元销售, ,那么半个月内可以售出那么半个月内可以售出400400件件. .根据销售经验根据销售经验, ,提提高单价会导致销售量的减少高单价会导致销售量的减少, ,即销售单价每提高即销售单价每提高1 1元元, ,销销售量相应减少售量相应减少2020件件. .售价售价提高多少元时提高多少元时, ,才能在半个月内才能在半个月内获得最大利润获得最大利润? ?解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20 x) =-20 x2+200 x+4000 =-20(x-5)2+4500 当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元我来当老板牛刀小试 某果园有某果园有100100棵橙子树棵橙子树, ,每一棵树平每一棵树平均结均结600600个橙子个橙子. .现准备多种一些橙子现准备多种一些橙子树以提高产量树以提高产量, ,但是如果多种树但是如果多种树, ,那么树那么树之间的距离和每一棵树所接受的阳光就之间的距离和每一棵树所接受的阳光就会减少会减少. .根据经验估计根据经验估计, ,每多种一棵树每多种一棵树, ,平平均每棵树就会少结均每棵树就会少结5 5个橙子个橙子. .若每个橙子若每个橙子市场售价约市场售价约2 2元,问增种多少棵橙子树,元,问增种多少棵橙子树,果园的总产值最高,果园的总产值最高果园的总产值最高,果园的总产值最高约为多少?约为多少?创新学习反思感悟 通过本节课的学习,我的收获是?课堂寄语 二次函数是一类最优化问题的数学模型,能指导我们解决生活中的实际问题,同学们,认真学习数学吧,因为数学来源于生活,更能优化我们的生活。1.已知某商品的进价为每件已知某商品的进价为每件4040元。现在的售价元。现在的售价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。市场调查件。市场调查反映:如调整价格反映:如调整价格 ,每涨价一元,每星期要,每涨价一元,每星期要少卖出少卖出1010件;每降价一元,每星期可多卖出件;每降价一元,每星期可多卖出2020件。如何定价才能使利润最大?件。如何定价才能使利润最大? 在上题中在上题中,若商场规定试销期间获利不得低于若商场规定试销期间获利不得低于40%又不得高于又不得高于60%,则销售单价定为多少时,则销售单价定为多少时,商场可获得最大利润?最大利润是多少?商场可获得最大利润?最大利润是多少?能力拓展 2.(09中考)某超市经销一种销售成本为每件40元的商品据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件设销售单价为x元(x50),一周的销售量为y件(1)写出y与x的函数关系式(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?中考链接